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S1) Bouchet & Meeuwig (2015): Pelagic fishes and sharks 
 

Bouchet & Meeuwig (2015). Drifting baited stereo-videography: A novel sampling tool for 

surveying pelagic wildlife in offshore marine reserves. Ecosphere, 6: art137.                           

           

ODMAP element Contents 

OVERVIEW 

Authorship • Authors: Phil J. Bouchet, Jessica J. Meeuwig 

• Contact email: pjbouchet@gmail.com 

• Title: Drifting baited stereo-videography: A novel sampling tool for surveying 

pelagic wildlife in offshore marine reserves 

• DOI: 10.1890/ES14-00380.1 

Model objective • Objective: Mapping/interpolation.  

• Target outputs: Maps of relative probability of presence 

Taxon Pelagic fishes, sharks, and other marine vertebrates 

Location Perth Canyon, Western Australia, Australia. 

Scale of analysis • Spatial extent (Lon/Lat): Longitude 115° E – 115.25° E, Latitude 31.90° S – 

32.04° S 

• Spatial resolution: 350 m 

• Temporal extent/time period: Autumn (March to May) 2013 

• Type of extent boundary: Rectangular 

Biodiversity data 

overview 

• Observation type: Field survey 

• Response/Data type: Presence-only 

Type of predictors Topographic, climatic 

Conceptual model / 

Hypotheses 

• Hypotheses about species-environment relationships: There is increasing 

evidence that complex seabed features influence the distribution of marine 

vertebrates. We used measures of seabed depth, curvature, slope, rugosity, 

and topographic complexity as predictor variables for fishes and sharks. We 

also tested sea surface temperature (and its variance). 

Assumptions We assumed that: 

•  Relevant ecological drivers (or proxies) of species distributions are included. 

• Detectability does not change across transects or habitat gradients. 

• Species are at (pseudo-) equilibrium with their environment. 

• Species show largely similar responses to the bait and the sampling 

instrument. 

Sampling is adequate and representative (and any biases are accounted 

for/corrected). 

SDM algorithms • Algorithms: We fitted MaxEnt and single-visit site-occupancy models to the 

field data. MaxEnt was chosen due to competitive performance on small 



sample sizes and ease of use, and its outputs were approximated to true 

probabilities using published equations. Occupancy models were used as a 

point of comparison, and in an attempt to account for imperfect detectability. 

(here, detectability allowed to be affected by survey effort, expressed as the 

log of transect lengths in each grid cell). 

• Model complexity: MaxEnt models were built with linear and quadratic 

features only. Occupancy models only included linear terms (no interactions). 

• Ensembles: We combined both model types to form ensemble predictions,  

Model workflow Only weakly correlated predictors were retained in the analysis. We performed 

parameter tuning for the regularisation parameter (b) in MaxEnt models 

based on AICc, using the ENMTools package. We tested b values from 1 to 10 

(in increments of one). Ensemble predictions were derived using weighted 

means, with weights given by the models’ average True Skill Statistic (TSS) 

evaluated over 50 Bootstrap replicates of the data. 

Software • Software: Analyses were conducted in R version 3.1.1 (R Core Team, 2016) 

and MaxEnt v3.3.3 (http://www.cs.princeton.edu/~schapire/maxent/). 

• Data availability: The raw data are available as a supplementary file 

accompanying the article. 

DATA 

Biodiversity data • Taxon names: All species are listed in the Supplementary Information.  

• Ecological level: Community level. 

• Data source: Survey data collected in the field over a period of 5 days 

between March and May 2013. 

• Sampling design: Sampling sites were chosen according to a generalized 

random tessellation stratified (GRTS) spanning a depth range of 1,220 m. 

Sites were visited once, with six camera units deployed at each location. 

• Sample size: The data contain 55 detections made over 51 camera transects. 

• Regional mask: We clipped all data to the boundary of the study region. 

• Scaling: Sightings were spatially thinned (within 300 m). 

• Data cleaning/filtering: Sightings were lumped across species.  

• Background data: We generated 1,000 random background points within 

the study area using a bias grid that reflected survey intensity throughout the 

region (expressed as the log of the cumulative length of transects traversed, 

in km). 

• Errors and biases: Sighting locations were identified with high precision from 

time-stamped GPS tracks. Misidentification rates were deemed low, as 

visibility was generally good and species identifications were checked by three 

independent image analysts. 

Data partitioning No data partitioning was applied; model performance was assessed using 

bootstrap resampling (n = 50 replicates). 

Predictor variables • Predictor variables:  

o Topography: Depth, aspect easting, aspect northing, longitudinal 

curvature, cross-sectional curvature, slope, slope variance, topographic 

position index (TPI), fractal dimension, rugosity. 

o Climate: Sea surface temperature (SST) and its variance. 

http://www.cs.princeton.edu/~schapire/maxent/


• Data sources: Predictors were derived from a national bathymetric grid 

produced and curated by Geoscience Australia. Remote-sensed sea surface 

temperature data were obtained from NASA’s Multi-scale Ultra-high 

Resolution (MUR). All data are freely available.  URL: 

http://marine.ga.gov.au/ and https://podaac.jpl.nasa.gov/Multi-scale_Ultra-

high_Resolution_MUR-SST 

• Spatial resolution and extant of raw data: The bathymetric grid was 

available at 350 m resolution. The remote-sensed temperature data were 

originally available at 1 km resolution. 

• Geographic projection: Asia South Equidistant Conic. 

• Temporal resolution and extent of raw data: SST data were obtained at 

daily resolution and averaged over the season (March to June). 

• Data processing: SST layers were downscaled to 350 m using bilinear 

interpolation. 

MODEL 

Variable pre-selection The choice of initial covariates was made as a compromise between their 

availability and their ecological relevance as indirect proxy of species 

distributions. Only weakly correlated covariates were included in each model. 

Multicollinearity Multicollinearity between predictors was investigated using variance inflation 

factors and Spearman rank correlation coefficients. When variables were 

strongly related (|rs| > 0.5 and/or VIF > 2), we only retained one from each pair 

to minimize the possibility of over-fitting. 

Model settings • Model settings: Default settings for MaxEnt (but tuned regularisation 
parameter) and single-visit site-occupancy models (linear terms).  

• Model settings for extrapolation: Predictions bounded by clamping in 

MaxEnt. 

Model estimates Covariate importance was calculated as the sum of model weights for models 

containing the covariate. Model-averaged parameter estimates from occupancy 

models are shown in Table 2. 

Model averaging / 

Ensembles 

We took an information-theoretic approach to model averaging for each model 

class, considering all combinations of covariates. Within model classes, 

candidate models were ranked based on their AICc scores, with models within 

three units of lowest-AICc model retained and averaged according to their 

corresponding Akaike weights. Consensus predictions were then obtained 

across model classes using weighted ensemble means.  

Non-independence Spatial autocorrelation was assessed using spline correlograms in the R package 

“ncf” (Bjornstad, 2016). 

ASSESSMENT 

Performance statistics • Performance statistics estimated on training data: Model performance 

was assessed based on the average true skill statistic (TSS) from 50 bootstrap 

runs, calculated based on a TSS-maximisation threshold. 

Plausibility checks • Response plots: We used partial dependence plots to check the ecological 

plausibility of fitted relationships in MaxEnt models. 

http://marine.ga.gov.au/
http://marine.ga.gov.au/
http://marine.ga.gov.au/
https://podaac.jpl.nasa.gov/Multi-scale_Ultra-high_Resolution_MUR-SST
https://podaac.jpl.nasa.gov/Multi-scale_Ultra-high_Resolution_MUR-SST
https://podaac.jpl.nasa.gov/Multi-scale_Ultra-high_Resolution_MUR-SST


PREDICTION 

Prediction output Predictions of relative probability of presence expressed on a continuous scale.  

Uncertainty 

quantification 

We compared model outputs to assess algorithmic uncertainty, and applied an 

ensemble approach averaging over two different model algorithms. 

  

  

  



S2) Dormann et al. (2008): SDMs for Great Grey Shrike 
 

Dormann, C. F., Purschke, O., García Marquéz, J. R., Lautenbach, S., & Schröder, B. (2008). 

Components of uncertainty in species distribution analysis: a case study of the Great Grey 

Shrike. Ecology, 89(12), 3371–3386. 
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OVERVIEW 

Authorship • Authors: Carsten F. Dormann, Oliver Purschke, Jaime García Márquez, Sven 

Lautenbach, Boris Schröder 

• Contact email: carsten.dormann@biom.uni-freiburg.de 

• Title: Components of uncertainty in species distribution analysis: a case study of 

the Great Grey Shrike 

• DOI: 10.1890/07-1772.1 

Model objective • SDM objective: forecasts/transfer. We quantified uncertainty introduced in 

various steps of an SDM analysis, from data to climate change scenarios. 

• Target output: probability of occurrence of the target bird species 

Taxon  • Great Grey Shrike, Lanius excubitor, Laniidae, Passeriformes, Aves 

Location • Saxony, Germany, Europe 

Scale of analysis • Spatial extent (Lon/Lat): 11.87 -15.04E, 50.17 - 51.68, covering 18,416 km2 

• Spatial Resolution: 5.6 km x 5.6 km 

• Temporal extent/time period: single time slice, 1993-1996 

• Type of extent boundary: administrative (the German state of Saxony) 

Biodiversity data 

overview 

• Observation type: standardised monitoring 

• Response/Data type: presence/absence; absences are more likely to be false 

absences than presences to be false presences 

Type of predictors land cover and climate, soil type, topographic slope and distances to rivers and 

settlements 

Conceptual model 

/ Hypotheses 

Hypotheses about species-environment relationship: shrike abundance is 

strongly affected by landscape composition, requiring a mix of hedges for perching 

and open grassland for hunting; the species is widespread, if not abundant, in 

Eurasia, without obvious associations to climate 

Assumptions Implicitly, we assume that sampling is homogeneous or related to distance to 

settlements (which is one of our predictors); for projections, we assume that the 

current distribution’s delimiting factors will also form the niche of the species in the 

future; that we have included all species-relevant predictors that are likely to change 

in the future 



SDM algorithms • Modelling algorithms: generalised linear model (GLM), generalised additive 

model (GAM), artificial neural network (ANN) 

• Justification of model complexity: Non-linear and interacting predictors to allow 

for more realistic cause-effect representation. Model selection to reduce predictive 

variance; virtual species analysis and randomisation of data analysis to explore the 

probability of creating spurious results due to the flexible algorithms. 

• Model averaging/ensemble modelling used? No. We explicitly quantified 

uncertainty introduced in various steps of an SDM analysis. 

Model workflow We tried to always use three variations for every step of the analysis: three data 

qualities (b, c, d; see Data section), three collinearity methods (none, PCA, sequential 

regression), three variable selection approaches (stepAIC, best subset AIC, AIC with 

>20 records per variable), three SDM algorithms (GLM, GAM and ANN), three climate 

scenarios (A1B, A2 and B2) and three rainfall realisations (wet, normal, dry), as to 

directly be able to compare their contribution to the overall prediction uncertainty. 

We combined all levels of the 4 factors of our analysis, yielding 81 models; each 

model was 5-fold cross-validated (randomly selected); mean CV-AUC is the measure 

of model quality; each model then predicts to each of the 9 scenario realisations, 

yielding 729 projections of probability of occurrence for each cell. The workflow is 

also depicted in Fig. 2 in the paper. 

Software • Modelling platform: R (version 2.3.1-2.6.0) with packages MASS, mgcv, nnet, 

verification (and others); own functions for stepwise selection of ANN; sequential 

regression; AICcEPV20 

• Code: code not shared, available on request 

• Data: data not shared, available on request 

DATA 

Biodiversity data • Taxon names: single species: Lanius excubitor 

• Details on taxonomic reference system: ? (standard bird book, wikipedia) 

• Ecological level: population (depending on personal preferences, this is an 

arbitrarily defined subpopulation of the species; or it comprises several 

subpopulations of the Saxonian population) 

• Biodiversity data source: data provided by the Saxonian breeding bird survey 

(www.umwelt.sachsen.de/de/wu/umwelt/lfug/), orchestrated by the Saxonian 

Ministry for the Environment; accessed in 2006 

• Sampling design: specific sampling design and sampling effort unknown (> 400 

observers); 550 cells 

• Sample size per taxon: three levels of decreasing confidence of breeding status: 

prevalence 57/550, 89/550 and 128/550 for d, c and b records, respectively 

• Country/region: Saxony (Germany), 150-1215 m a.s.l. 

• Absence data collection: non-observation of species was treated as absence 

• Details on potential errors and biases in data: breeding records come in three 

levels of increasing certainty (b to d, e.g. from nest building to fledgling feeding) ; 

misidentification error low (as visual identification is required for b/c/d 

classification); bird is conspicuous in behaviour and appearance 

Data partitioning • Selection of training data: 5-fold cross-validation (same folds for all approaches)  

• Selection of validation data: (see training data) 

• Selection of truly independent test data: none; we used virtual species analysis 

and randomisation of data analysis, to explore the probability of creating spurious 



results due to the flexible algorithms, but no external validation 

Predictor 

variables 

• State predictor variables used: we selected 12 predictors, based on our 

understanding of the ecology of the bird, but not considering their collinearity 

(which is part of the model setup): 5 land cover, 1 biotope diversity, slope, distance 

to rivers, distance to settlements, percentage of sandy soil, mean annual 

temperature, annual precipitation 

• Details on data sources: web-references to data sources given in the paper 

footnotes; only land use had to be purchased, all others are freely available;  

• Spatial resolution and spatial extent of raw data: same as biodiversity data 

• Geographical projection: Bessel, Potsdam in Gauss-Krüger (zone 3) coordinates 

• Temporal resolution and temporal extent of raw data: single slice, extent is 4 

years (1993-1996) 

• Details on data processing and scaling: climate data were interpolated between 

climate stations using external drift kriging with elevation as covariate; all 

variables were transformed aiming at uniformity (typically square root or log-

transforms; details see paper) and standardised before further analyses 

• Details on measurements errors and bias: not available are data on prey 

availability, on sampling effort, on land management, on human disturbance 

Transfer data for 

projection 

• Models and scenarios, and data sources: ECHAM5 simulations for 2041-2050 

with regional downscaling by WETTREG (http://www.cec-

potsdam.de/Produkte/Klima/WettReg/wettreg.html), for scenarios A1B, A2 and 

B2, with three rainfall realisations each (dry, normal, wet) 

• Data processing and scaling: temperature and rainfall scenarios were 

transformed using the same transformation as for the original data and the 

original’s standard deviation and mean for standardisation 

MODEL 

Variable pre-

selection 

Ecological pre-selection of variables we deemed important for the species, down to 

12 predictors 

Multicollinearity Treatment of multicollinearity was tested as part of the study setup: not addressed, 

PCA and sequential regression. 

Model settings • Model settings: GLM (with quadratic terms but no first-order interactions); GAM 

(with cubic splines); ANN (feed forward, one hidden layer with 7 nodes, 

decay=0.03). Weights: we considered (and provide data for) but did NOT use 

weighting cells by their area (as borders had less than 100%) 

Model estimates • Assessment of model coefficients: --  

• Details on quantification of uncertainty: (extensive, as this is the aim of the 

study) 

• Assessment of variable importance: only for GLM 

Model 

selection/Model 

averaging/Ensem

bles 

• Model selection strategy: stepAIC, best subset AIC, best subset with 20 events per 

variable 

• no model averaging, no ensemble 

Non- • none 

http://www.cec-potsdam.de/Produkte/Klima/WettReg/wettreg
http://www.cec-potsdam.de/Produkte/Klima/WettReg/wettreg


independence 

correction 

Threshold 

selection 

• Prevalence threshold to assess changes in spatial distributions 

ASSESSMENT 

Performance 

statistics 

• Performance on validation data: mean AUC on 5-fold cross-validation 

 

Plausibility check • Response plots: partial plot for the four most important predictors in the best 

model; no CIs 

PREDICTION 

Uncertainty 

quantification 

That was the aim of the study; uncertainty in input data, collinearity, model 

selection, model algorithm, climate scenario and realisation of rainfall; results given 

as variability of prediction across all 729 combinations. 

• Algorithmic uncertainty: 3 different algorithms (GLM, GAM, ANN) 

• Effect of parameter uncertainty, error propagation: propagation of uncertainty 

in response, model selection, collinearity, model algorithm, climate change scenario 

and rainfall scenario onto fit and prediction 

• Uncertainty in scenarios: 3 climate changes scenarios, with three rainfall 

scenarios each 

 

  



S3) Fandos and Telleria (2018): SDMs for European migratory birds 
 

Fandos, G., & Tellería, J. L. (2018). Range compression of migratory passerines in wintering 

grounds of the Western Mediterranean: conservation prospects. Bird Conservation 

International, 28(3), 462-474. 
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OVERVIEW 

Authorship • Authors: Guillermo Fandos and José Luis Tellería 

• Contact email: gfandos@ucm.es 

• Title: Range compression of migratory passerines in wintering grounds of the 

Western Mediterranean: conservation prospects 

• DOI: 10.1017/S0959270917000120 

Model objective  • SDM objective: Mapping/interpolation. Calculate the extent of potential breeding 

and wintering ranges of studied species. 

• Target outputs: continuous occurrence probabilities and binary maps of potential 

presence for each species 

Taxon  European migratory birds, 10 partial migratory passerines (Passeriformes). 

Location Western Europe 

Scale of analysis • Spatial extent (Lon/Lat): 28° N - 44° N, 10° W - 10° E 

• Spatial resolution: 5x5 km  

• Temporal resolution and extent: 1925-2011. Breeding period (April to 

August). Wintering period (December-to February) 

Biodiversity data 

overview 

• Observation type: citizen science, Ring recoveries  

• Response/Data type: presence only 

Type of 

predictors 

Climatic, habitat structure 

Conceptual model 

/ Hypotheses 

Based on previous studies, we selected climate and vegetation structure as important 

environmental predictor variables related to the large-scale distribution of birds in 

breeding and wintering areas. Mean temperatures in breeding (April to August) and 

wintering (December to February) ranges were selected because small birds avoid 

cold areas to limit excessive thermoregulatory costs (Calder and King 1974). We also 

included mean precipitation in breeding and wintering grounds. Precipitation 

improves primary productivity in wintering grounds after the Mediterranean 

summer (Nahal 1981), thus increasing the carrying capacity for wintering birds 

(Carrascal and Palomino 2012, Tellería et al. 2014b). However, in temperate areas, 

higher precipitation has been related to poor breeding success. Thus, it can be 

suggested that the moistest sectors will be suboptimal areas for breeding (e.g. Öberg 

et al. 2015). We also included the annual Normalized Difference Vegetation Index 

(NDVI) as a surrogate of primary productivity and, according to the strong effect of 

mailto:gfandos@ucm.es


vegetation cover on passerine distribution (Wiens 1989), we included woody cover 

(Di Miceli et al.2011). Finally, we considered the effect of two different variables 

related to the seasonal pulses of productivity tracked by migratory birds in breeding 

and wintering grounds (Wisz et al. 2007,Engler et al. 2014). We used precipitation 

seasonality as a surrogate for the rain-mediated productive pulses in Mediterranean 

wintering grounds and temperature seasonality as a surrogate of the productive 

output in central and northern European summer grounds. 

Assumptions • #1: Relevant ecological drivers (or proxies) of species distributions are included. 

• #2: Detectability does not change across habitat gradients. 

• #3: Species are at equilibrium with their environment. 

• #4: Sampling is adequate and representative (and any biases are accounted 

for/corrected). 

SDM algorithms • Algorithms: MaxEnt. Chosen due to competitive performance on small sample 
sizes and presence only data. 

• Model complexity: We allowed ‘l’ (linear), ‘q’ (quadratic), ‘p’ (product), ‘and ‘h’ 
(hinge) features 

• Model averaging: Model averaging of 10 replicates 
 

Model workflow Prior to model building, all predictor variables were standardised and used variance 

inflation (VIF) analysis to avoid highly correlated variables. We only included the five 

most important and weakly correlated variables per season. 

Univariate variable importance for each predictor was assessed with jackknife 

analyses of the regularised gain with training data. 

Predictive model performance was assessed using a 10-fold cross-validation. 

Software • Software: R (no version specified). MaxEnt (v3.3.3k) 

• Data availability:  https://euring.org/ 

DATA 

Biodiversity data • Taxon names: European migratory birds, 10 partial migratory passerines 

(Passeriformes): Carduelis cannabina; Erithacus rubecula; Fringilla coelebs; 

Motacilla alba; Phoenicurus ochruros; Phylloscopus collybita; Sylvia atricapilla; 

Turdus iliacus; Turdus merula; Turdus philomelos 

• Taxonomic reference system: We follow the taxonomy of EURING 

• Ecological level: species 

• Data sources: https://euring.org/ 

• Sampling design: opportunistic; volunteer-based recording schemes 

• Sample size: Carduelis cannabina (62); Erithacus rubecula (170); Fringilla coelebs 

(55); Motacilla alba (99); Phoenicurus ochruros (68); Phylloscopus collybita (79); 

Sylvia atricapilla (125); Turdus iliacus (94); Turdus merula (60); Turdus 

philomelos (301) 

• Mask: we clipped all data to the political boundary of Europe 

• Scaling: Duplicate records in the same localities (e.g. ringing stations) were 

removed and spatial autocorrelation was minimised by randomly removing 

occurrences within 5 km of each other. 

• Data filtering: We used individuals with first-encounter records refer to the initial 

encounter with an individual when it was first ringed in breeding (April to August) 

or wintering (December to February). Recoveries in wintering (December to 



February) or breeding (April to August), respectively, comprise all dead (including 

sick and dying) encounters, live recaptures away from the ringing place (nearly all 

by qualified ringers), and live resightings away from the ringing place (mainly by 

ringers and other birdwatchers). 

• Background data: random selection of background points in the minimum convex 

polygon (convex hull) produced by the full set of ringing records. 

• Errors and biases: Error rates deemed low, as volunteers were highly trained and 

the individual is identified twice (first encounter and recovery) independently. 

However, the background selection was weighted using a bias grid reflecting 

human footprint (HFP), an index of population density, land transformation and 

road density (Sanderson et al. 2002). We used HFP as a bias grid because the mean 

human footprint per country is positively related to the density of all ringing 

recoveries reported per country (r = 0.53, P = 0.036, n = 16), a plain index of the 

effort applied to control ringed birds (Appendix S1). 

Data partitioning We randomly selected 70% of data for model calibration and 30% for validation of 

the predictions. 

The models were evaluated using 10-fold cross-validation 

Predictor 

variables 

• Predictor variables: For breeding and wintering seasonal maximum, minimum 

and mean temperature, temperature seasonality, seasonal precipitation, 

precipitation seasonality, sun radiation, NDVI, bare ground, herbaceous cover and 

tree cover 

• Data sources: Climate: Climate data were recorded from Worldclim 1.4 (Hijmans 

et al. 2005) and prepared as ASCII raster maps with a resolution of 5x5 km with the 

raster package in R (Hijmans and Van Etten 2013, R Development Core Team 

2015). Vegetation: Normalized Difference Vegetation Index (NDVI) as a surrogate 

of primary productivity was obtained from MODIS satellite-based sensor (30” 

resolution, or ~1 km; Carroll et al. 2004, Pettorelli et al. 2011). Woody, Herbaceous 

and Bare Ground cover from Vegetation Continuous Fields MOD44B (Di Miceli et 

al.2011) 

• Spatial extent: 180, 180, 60, 90 (xmin, xmax, ymin, ymax) 

• Spatial resolution: The raw resolution of the climate data was 2.5 minutes. The 

raw NDVI resolution 1 km, and the raw resolution of the vegetation variables was 

250m. 

• Projection: WGS 1984, EPSG:4326 

• Temporal extent: Climate: 1960-1990 

• Data processing: For NDVI and habitat cover variables we used a spatial 

aggregation from 1 km to 5 km (final resolution) by the method bilinear (raster R 

package; Hijmans and Van Etten 2013) 

• Dimension reduction: predictor variables were standardised and used variance 

inflation (VIF) analysis to avoid highly correlated variables. We only included the 

five most important and weakly correlated variables per season. 

MODEL 

Variable pre-

selection 

Hypothesised ecological relevance for species distributions.  

Multicollinearity We used variance inflation (VIF) analysis to avoid highly correlated variables 

(Marquardt 1970). From a set of 11 variables (seasonal maximum, minimum and 



mean temperature, temperature seasonality, seasonal precipitation, precipitation 

seasonality, sun radiation, NDVI, bare ground, herbaceous cover and tree cover) we 

selected five environmental predictors per season (VIF scores under 5, range: 1.15–

4.56). 

Model settings MaxEnt: 

log output, featureSet (Autofeatures: Linear, quadratic, product, thresholdand hinge 

features), regularizationMultiplierSet (b = 1), convergenceThresholdSet (0.00001), 

samplingBiasRule (human foot print index ), samplingBiasNotes ( Supplemental 

Material 1), Replications (10), Random test percentage (30), Random seed (Yes), 

Replicate Run Type (Crossvalidation) 

Model estimates Covariate importance calculated with jackknife analyses of the regularised gain with 

training data, which accounts for dependencies between predictor variables by 

building two sorts of models: one involving a given predictor by itself, and the other 

involving all features except for the given predictor. 

Non-

independence 

analyses 

None 

Threshold 

selection 

Maxent continuous maps were converted into binary ‘presence–absence’ maps using 

the threshold selection method based on maximising the sum of sensitivity and 

specificity (Manel et al. 2001). This threshold is recommended for conservation 

purposes as omission errors are avoided and sensitivity favoured (Jiménez-Valverde 

and Lobo 2007, Liu et al. 2013). We considered areas with a habitat suitability above 

the threshold as ‘presence’ and those below as ‘absence’. 

ASSESSMENT 

Performance 

statistics 

The averaged ROC AUC scores were used as model predictive performance on 

validation data, following a 10-fold cross-validation procedure with ten replicates. 

Plausibility check Response shapes: Partial dependence plots. 

PREDICTION 

Prediction output Prediction unit: We used continuous predictions of occurrence probability per 

species as well as predicted presence per species that were obtained by binarizing 

the predicted occurrence probabilities using the threshold selection method based 

on maximising the sum of sensitivity and specificity 

  

 

  



S4) Franklin (1998): SDMs for Californian shrubs 
 

Franklin, J. 1998. Predicting the distribution of shrub species in southern California from 

climate and terrain-derived variables. Journal of Vegetation Science 9:733-748.  
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element 

Contents 

OVERVIEW 

Authorship • Authors: Janet Franklin 

• Contact email: janet.franklin1@gmail.com 

• Title: Predicting the distribution of shrub species in southern California from 

climate and terrain-derived variables 

• DOI: 10.2307/3237291 

Model objective • SDM objective: mapping/interpolation 

• Main target output: continuous habitat suitability index (probability of species 

presence) 

Taxon 20 shrub species that are commonly found in the chaparral and coastal sage scrub 

communities of southern California 

Location California’s southwest ecoregion 

Scale of analyses • Spatial extent (Lon/Lat): Not retrievable anymore. 

• Spatial resolution: 30 m 

• Temporal extent: period of climate normals (30 prior years averaged) 

• Temporal resolution: single time period 

• Boundary: natural 

Biodiversity data 

overview 

• Observation type: field survey 

• Response data type: presence/absence 

Type of 

predictors 

climatic, edaphic, topographic 

Conceptual 

Model / 

Hypotheses 

Hypotheses: Climate, soils and topography are correlated with plant distributions 
 

Assumptions Species–environment equilibrium, Availability of all important predictors 

SDM algorithms • Model algorithms: glm, gam, CART 

• Model complexity: we let the data determine model complexity in CT and GAM, 

and used the response shape of GAMs as indication to define the complexity of 

GLMs 

• Model averaging: None. 

mailto:janet.franklin1@gmail.com


Model workflow GAMs were first parameterized using all environmental and spatial variables, and 

smoothing splines, to assess the validity of the linear model for each bivariate 

relationship, and to explore the shape of the response curve and strength of the 

relationship between each species and explanatory variable. Then, GLMs were 

parameterized using all variables and using response functions suggested by the 

GAM.  

Software • Software: S-Plus software version 3.3 for Windows 

• Code availability: not available 

• Data availability: not available 

DATA 

Biodiversity data • Taxon names: Adenostoma fasciculatum, Adenostoma sparsifolium, 

Arctostaphylos glandulosa, Arctostaphylos glauca, Ceanothus crassifolius, 

Ceanothus greggii-perplexans, Ceanothus leucodermis, Ceanothus tomentosus, 

Cercocarpus betuloides, Heteromeles arbutifolia, Quercus berberidifolia, 

Quercus wislizenii, Rhus ovata, Xylococcus bicolor, Yucca whipplei, Artemisia 

californica, Eriogonum fasciculatum, Malosma laurina, Salvia apiana Salvia 

mellifera 

• Taxonomic reference system: Jepson Flora of California 

• Ecological level: species 

• Data sources: USDA Forest Service 

• Sampling design: Subjective spatial sampling (representative sampling of plant 

communities; once-off temporal sampling 

• Sample size: Number of observations 322 to 906 per species, prevalence 25 to 

859 presences per species 

• Clipping: National Forests in California Southwest Ecoregion 

• Absence data: plant community plot data yielded presence and absence. Cover 

data simplified to presence 

• Potential errors and biases: Subjective sampling locations 

Data Partitioning All data were used for model training and model performance was only assessed 

internally. 

Predictor 

variables 

• Predictor variables: annual precipitation, mean minimum temperature of the 

coldest month, mean maxi- mum temperature of the warmest month, Quarterly 

estimates of Potential solar, radiation, slope, geographical coordinates 

• Data source: J. Michaelsen (unpubl.) provided 1-km gridded estimates of 28 

climate variables for the southwest ecoregion 

• Data processing:  

o mean minimum and maximum monthly temperature for each month, and 

annual and trimesterly mean precipitation were interpolated from climate 

station data using elevation from a digital elevation model. Universal kriging 

was used as interpolation method. Interpolated values of the climate 

variables at the vegetation plot locations are estimated with error (0.5 - 2.0 °C 

for the temperature variables). 

o Potential solar radiation (insolation) was estimated using the Atmospheric 

and Topographic Model (ATM) of solar radiation. Topographic variables 

(elevation, slope and aspect) used in radiation modeling were derived from 

USGS 7.5’ 30 m × 30 m resolution DEMs. Incoming solar radiation was 



calculated for each grid cell in the DEM, for a single day each month, and then 

multiplied by the number of days as an estimate of monthly potential 

radiation. These values were summed to estimate quarterly and annual solar 

radiation. Errors commonly found in DEMs (related to the method used to 

derive the elevation grid) are amplified when first- and second-order 

difference operations are applied to derive slope, aspect. The only additional 

variable that was tested was slope which was calculated using the IPW 

software and a second order finite difference method. 

• Spatial resolution of raw data: 1 km, 30 m 

• Projection: UTM 

MODEL 

Variable pre-

selection 

Because there is a body of literature and theory linking bioclimatic gradients to 

plant distributions, and because the models are intended to be predictive rather 

than exploratory, explanatory variables were chosen a priori. 

Multicollinearity I excluded highly correlated variables based on ecological plausibility. For example, 

the deviation of the coldest temperature from the annual mean was also examined, 

but was strongly correlated with jul.maxt. Also, quarterly estimates of solar 

radiation for the growing season (spring: Mar-May), and driest quarter (summer: 

Jun-Aug) were highly correlated (r = 0.88), and therefore only winter (Dec-Feb) 

and spring values were used in modelling. 

Model setting I used species presence/absence as the dependent variable, and so the logistic link 

function and binomial error term were used in the GAMs and GLMs, and 

classification trees (CT) were developed to predict species presence or absence. 

GLM response functions were modelled as either linear, quadratic (approximating 

a unimodal or symmetric Gaussian response curve), or a higher-order polynomial. 

Classification trees were developed for each species. A cut-off of five observations 

per terminal node was used, beyond which no splitting of the dataset occurred. 

Cross-validation was used to determine the optimum tree size yielding the most 

robust predictions. All trees were pruned to the 22 ‘best’ nodes based on a cost- 

complexity measure (deleting those ‘branches’ that reduce deviance the least). 

Then the tree was pruned inter- actively to the smallest size possible without 

increasing model error. 

Model estimates • Uncertainty in model coefficients: Cross-validation was used to determine the 

optimum tree size yielding the most robust predictions 

• Variable importance: assessed by quantifying how much deviance each variable 

explains 

Non-

independence 

• Method for addressing spatial autocorrelation: Model residuals were not 

explicitly tested for spatial dependence. I developed models both with and 

without geographic coordinates as explanatory variables. This addresses 

geographic patterning but not spatial dependence or clustering in the dataset. 

Because of strong clustering of some species among the sample plots, spatial 

variables accounted for large proportions of the explained deviance in some 

GAMs and GLMs. However, CT-models that included spatial variables only 

accounted for a small increase in prediction accuracy over those that did not. 

Threshold I chose an optimum threshold value of p that minimizes omission and commission 



selection errors. This is important because when a species is rare in the sample, a ‘model’ 

that predicted it to be absent everywhere would have high overall accuracy (but 

high omission error), and vice versa. 

ASSESSMENT 

Performance 

statistics 

• Performance on training data: True negative rate, True positive rate, False 

negative rate, False positive rate. 

Performance statistics were only estimated on training data. The model fit and 

significance of the variables were evaluated using the residual deviance. [Austin et 

al.] suggest deleting observations that are beyond the last positive observation by 

greater than 1% of the sample, sorted by an important environmental variable. I 

included the last positive observation +/–10% of the sample, and so the fit of my 

models may still be overestimated somewhat. The models were also assessed by 

examining the number of observations (presence/absence) correctly predicted by 

each model, as well as the proportion of omission (type I) and commission (type II) 

errors – predicting the species to be absent when it is present, and vice versa. 

Plausibility check Response curves were checked for complexity and plausibility. I assessed response 

shape (linear, unimodal), confidence intervals and optima.  

PREDICTION 

Prediction output • Prediction unit: presence and absence 

• Post-processing: I took care to delimit prediction to interpolation within the 

study area (no prediction or projection to new place or time). 

 

  



S5) Leitão et al. (2010): SDMs for steppe / farmland birds 
 

Leitão, Moreira & Osborne (2010). Breeding habitat selection by steppe birds in Castro Verde: A 

remote sensing and advanced statistics approach. Ardeola, 57(E): 93-116.                           

           

ODMAP element Contents 

OVERVIEW 

Authorship • Authors: Pedro J. Leitão, Francisco Moreira, Patrick E. Osborne 

• Contact email: p.leitao@geo.hu-berlin.de 

• Title: Breeding habitat selection by steppe birds in Castro Verde: A remote 

sensing and advanced statistics approach 

• DOI: N/A 

Model Objective • Objective: Inference/Explanation.  

• Target output: Habitat suitability (relative probability of occurrence), partial 

dependency plots. 

Taxon  Steppe / farmland birds, 15 species 

Location Baixo Alentejo, Portugal 

Scale of analysis • Spatial extent (Lon/Lat):  

o Baixo Alentejo (coarse scale): Longitude 6.55° W - 8.28° W, Latitude 

37.18° N – 38.20° N  

o Special Protection Area for birds of Castro Verde (fine scale): Longitude 

7.49° W - 8.14° W, Latitude 37.34° N – 37.53° N 

• Spatial resolution: 1 km grid squares (coarse scale) and 125 m buffer point 

counts (fine scale) 

• Temporal resolution and extent: Spring (March to May) of 2004 (coarse 

scale) and 2006 (fine scale) 

• Type of extent boundary: political (boundary of NUTS3 territorial region of 

Baixo Alentejo for coarse scale; boundary of Special Protection Area for birds 

of Castro Verde for fine scale) 

Biodiversity data 

overview 

• Observation type: Visual and auditory detections 

• Response/Data type: Presence/absence data 

 

Type of 

predictors 

• Vegetation, topographic, disturbances 

Conceptual 

model / 

Hypotheses 

We used vegetation / land cover, terrain and landscape disturbances as 

environmental predictor variables for bird occurrences in our study area. 

Assumptions We assumed that the relevant ecological drivers (or proxies) of species 

distributions are included, that detectability does not change across transects 
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or habitat gradients, that species are at equilibrium with their environment, 

and that the sampling is adequate and representative (except for one species, 

which is discussed). 

SDM algorithms • Algorithms: SDMs were fitted using Multivariate Adaptive Regression Splines 

(MARS) 

• Model complexity: Model settings, relating to the use of interactions between 

variables and model backfitting penalisation, were chosen by grid search 

optimising for model performance. 

• Model averaging: We fitted models with different subsets of predictor 

variables, based on different correlation thresholds. For inference of the species 

habitat preferences (at each scale of analysis), we considered only the responses 

which were consistently fitted across correlation thresholds (i.e. those that 

entered all models), and calculated their averaged model drop contributions 

(explained deviance loss when variable dropped). 

Model workflow We used a cross-correlation approach, by running three models per species (at 

each scale), with different subsets of predictor variables, based on different 

data dependency levels. We hence defined three thresholds of (rank) 

correlation between the variables – at Spearman rho values of 0.7, 0.6 and 0.5 

– for all species, on both ‘fine’ and ‘coarse’ models. Using these defined 

thresholds, we generated three predictor subsets, from the original sets. In 

each case, the best fitting set of uncorrelated variables (below the respective 

rho value) was kept, the remaining variables being discarded. The averaged 

ROC AUC scores were used as model predictive performance measures, 

following a 10-fold cross-validation procedure with five replicates. 

Software • Software: All analyses were conducted using R (no version specified; R Core 

Team, 2010) with a modified version of code from the ‘mda’ package, to allow 

for binary data and n-fold model cross-validation (Hastie and Tibshirani, 1996; 

Elith and Leathwick, 2007) 

• Code availability: the code used was kindly provided by Jane Elith 

(pers.comm.), and were later published in package ‘earth‘. 

• Data availability: no data were made available. 

DATA 

Biodiversity data • Taxon names: All species are listed in Table 1 of the original publication. 

• Taxonomic reference system: not specified. 

• Ecological level: population level. 

• Data source: Bird presence-absence data were collected in the field by trained 

surveyors.  

• Sampling design: Bird atlas data (coarse scale) were recorded during Spring 

2004, according to a geographically stratified random scheme; bird point 

counts (fine scale) were collected during Spring 2006, following a combined 

systematic and random scheme. In both cases, species were identified by 

visual or auditory cues, down to the species level (except for two species 

which were considered together due to the non-reliable field discrimination). 

• Sample size: 557 grid squares (coarse scale) and 1076 point counts (fine 

scale). 

• Absence data: Count data converted to presence/absence. Zero count was 

interpreted as absence. 



 

Data 

partitioning 

10-fold cross-validation 

Predictor 

variables 

• Predictor variables: 

o Vegetation: seven variables which describe the yearly vegetation 

phenological changes (as measured by NDVI): three relating to 

vegetation vigour changes, such as senescence and growth in different 

periods (Summer, Winter and Spring); two relating to average vegetation 

vigour or biomass in peak periods (Low and High); and two single month 

NDVI averages, which were uncorrelated with all previous measures 

(Dec and May) for the coarse scale study; and four land cover classes -  

Fallow, Cereal, Bare soil and Woodlands & shrubs - as well as one class 

related with the phenological gradient of herbaceous vegetation 

(Phenology), ranging from green to dry (an indicator of soil water 

availability) for the fine scale study. 

o Terrain: Altitude and topographic variability (at a 10m vertical 

resolution) for the coarse scale study; and Slope and ‘Terrain variability 

(standard deviation of slope) for the fine scale study. 

o Disturbance: Distance to the nearest urban or constructed structures, to 

the nearest paved road and to the nearest river, for the coarse scale 

study; and distance to the nearest water body, to the nearest paved road, 

to the nearest built-up structure, to the nearest tree, and tree density, for 

the fine scale study. 

• Data source: The coarse scale vegetation predictors were derived from a 

time series of Normalized Difference Vegetation Index (NDVI) imagery from 

the Spot Vegetation sensor. The fine scale vegetation predictors, as well as 

the distance to the nearest water body, were derived from a two-image set 

of Landsat TM data. The coarse scale terrain predictors were derived from a 

DTM acquired from the Instituto Geográfico Português (IGP). The fine scale 

terrain predictors were derived from airborne laser scanning (LiDAR) data. 

The coarse scale disturbance predictors were derived from Corine Land 

Cover 2000 raster data (European Environment Agency), a vector-based 

road map provided by the Instituto de Estradas de Portugal (IEP) and a 

hydrographical map from the Agência Portuguesa do Ambiente – Atlas do 

Ambiente Digital (http://www2.apambiente.pt/atlas/est/index.jsp). At the 

fine scale, the disturbance predictors were derived from airborne laser 

scanning (LiDAR) data and a road map compiled using a Global Positioning 

System (GPS). 

• Data processing: Both direct (raw) and indirect (processed) remote sensing 

data products were used to describe environmental and landscape features 

related to vegetation, terrain and disturbance.  

o Landsat: At the fine scale, the main land cover classes in the Castro Verde 

area were characterised by classifying a two-image set of Landsat TM 

data (“Fallow”, “Cereal”, “Bare soil” and “Woodlands & shrubs”), as well as 

one class related with the phenological gradient of herbaceous vegetation 

(“Phenology”), ranging from green to dry (senescent) – an indicator of 

soil water availability. From this classification we extracted a map of all 

water bodies in the region, from which we derived the variable 

“Waterdist”, distance to the nearest water body. This variable constitutes 



a fragmenting element in the pseudo-steppe landscape, and was thus 

grouped together with the disturbance variables.  

o LiDAR: Airborne laser scanning (LiDAR) data were collected over the 

Castro Verde study area. Variables derived from these data were terrain 

slope (“Slope”), terrain variability (“Terrainvar”), distance to the nearest 

built-up structure (“Builtdist”) and to the nearest tree (“Treedist”) and 

tree density (“Treedens”). All roads and tracks in the area were mapped 

using a Global Positioning System (GPS), and the distance to these 

calculated in the variable “Roaddist”. 

• NDVI: At the coarse scale, the temporal vegetation patterns in the Baixo 

Alentejo region were described by a 12 month series of Normalized 

Difference Vegetation Index (NDVI) imagery from the Spot Vegetation 

sensor. This temporal series refers to the 12 month period preceding the 

end of the respective field season (June 2003-May 2004). The series was 

further reduced into seven uncorrelated variables which describe the 

yearly vegetation phenological changes: three relating to vegetation 

vigour changes, such as senescence and growth in different periods 

(“Summer”, “Winter” and “Spring”); two relating to average vegetation 

vigour or biomass in peak periods (“Low” and “High”); and two single 

month NDVI averages, which were uncorrelated with all previous 

measures (“Dec” and “May”). The region’s altitude (“Alt”) and topographic 

variability at 10 m vertical resolution (“Topov10”) were extracted from a 

DTM. Corine Land Cover 2000 raster data were used to calculate a 

distance map to the nearest towns, urban settlements or other 

constructed structures (“Urbandist”). Distance to the nearest road 

(“Roaddist”) and nearest river or water body (“Waterdist”) were 

calculated from vector-based maps.  

MODEL 

Variable pre-

selection 

Compromise between covariate availability and ecological relevance as indirect 

proxy of species distributions. 

Multicollinearity Collinearity assessed using spearman rank. Cross-correlation approach, by 

running three models per species (at each scale), with different subsets of 

predictor variables, based on different data dependency levels. We hence 

defined three thresholds of (rank) correlation between the variables – at 

Spearman rho values of 0.7, 0.6 and 0.5 – for all species, on both ‘fine’ and 

‘coarse’ models. Using these defined thresholds, we generated three predictor 

subsets, from the original sets. In each case, the best fitting set of uncorrelated 

variables (below the respective rho value) was kept, the remaining variables 

being discarded.  

Model settings Model fine-tuning, relating to the use of interactions between variables and 

model backfitting penalisation, was done by grid search optimising for model 

performance. 

Model estimates Covariate importance calculated as averaged model drop contributions 

(explained deviance loss when variable dropped) 



Model averaging 

/ ensembles 

For inference of the species habitat preferences (at each scale of analysis), we 

considered only the responses which were consistently fitted across correlation 

thresholds (i.e. those that entered all models), and calculated their averaged 

model drop contributions (explained deviance loss when variable dropped). 

Non-

independence 

analyses 

N/A 

ASSESSMENT 

Performance 

statistics 

• Performance statistics estimated on validation data (from data 

partitioning): The averaged ROC AUC scores were used as model predictive 

performance measures, following a 10-fold cross-validation procedure with 

five replicates. 

Plausibility check The fitted species responses were checked for ecological plausibility through the 

inspection of partial dependency plots. 

 

 

  



S6) Peterson and Samy (2016): Filovirus Distributions 
 

Peterson AT & Samy AM (2016) Geographic potential of disease caused by Ebola and Marburg 

viruses in Africa. Acta Tropica 162: 114-124. 

 

ODMAP element Contents 

OVERVIEW 

Authorship • Authors: A. Townsend Peterson, Abdallah M. Samy 

• Contact email: town@ku.edu 

• Title: Geographic potential of disease caused by Ebola and Marburg viruses in 

Africa 

• DOI: 10.1016/j.actatropica.2016.06.012 

Model objective • SDM objective: Mapping/interpolation. Main target output: Potential species 

presence  

Taxon Ebola and Marburg viruses 

Location  Africa 

Scale of analysis • Spatial extent (lon/lat): 19° W – 53° E, 36° S – 38° N 

• Spatial resolution: 1 km 

• Temporal extent: Occurrence data extend 1960s to present; environmental 

data for just one year (1995-1996), approximating the median date of the 

occurrence data. 

• Type of extent boundary: rectangular 

Biodiversity data 

overview 

• Observation type: Disease case records 

• Response data type: Presence-only 

Type of 

predictors 

Vegetation index 

Conceptual 

model / 

Hypotheses 

• Hypotheses about species-environment relationships: Focus was on the 

ecological niche of each species, but analysis was limited to areas posited as 

accessible to each species, so the output would be a distribution model, more or 

less. 

Assumptions All of the assumptions in Table 2 apply, in some sense. Perhaps the most relevant, 

however, is that the very limited sampling available to this study represents 

enough of the true niche signal that the estimated niche is informative about the 

distributional potential of the species. 

SDM 

algorithms 

• SDM algorithm: Maxent; other algorithms tested initially via the openModeller 

platform. Choice of Maxent was based on bootstrapping procedures it includes, 

which facilitate calculation of uncertainty. 

• Model complexity: Not controlled quantitatively. However, principal 

components analysis was used to control the complexity of the environmental 



space and limit the number of dimensions involved. 

• Model averaging/ensembles: N/A 

Model workflow Model calibration done with careful consideration of data limitations, and effects 

of various assumptions available were assessed via experimentation. No 

statistical evaluation was done owing to small sample sizes, but uncertainty was 

considered carefully. 

Software • Software: Maxent 3.3.3k 

• Code availability: N/A 

• Data availability: Data are available in an open, online, digital repository. 

DATA 

Biodiversity data • Taxon names: Zaire ebolavirus, Sudan ebolavirus, Marburg 

• Taxonomic reference system: N/A 

• Ecological level: species 

• Biodiversity data source: Data were derived from literature sources, but all 

data are openly available, and the version is clear because the data matrix is 

deposited as it was at the time of analysis. Including our earlier compilation 

(Peterson et al., 2004; Peterson et al., 2006) and numerous subsequent 

compilations (Bausch and Schwarz, 2014; Changula et al., 2014; Chippaux, 

2014; Leroy et al., 2009; Mylne et al., 2014; Pourrut et al., 2005; Roddy, 2014). 

As an independent source, however, we reviewed all posts in the ProMed 

archives (http://www.promedmail.org/, queries executed 1 November 2014) 

that included reference to “Ebola,” “Marburg,” or “filovirus” 

• Sampling design: disease case records 

• Sample size per taxon: 1-34 

• Background data: Random, as no information on the sampling process was 

available. 

• Details on data cleaning: Only occurrences cited as “confirmed” were used, 

and records were always verified against independent information sources. We 

omitted occurrences detected serologically in bats, in view of the rather odd 

patterns that such detections have shown. For each occurrence in the final list, 

we used Internet-based electronic gazetteers to add geographic coordinates to 

the data record. Occurrence data were random points within the radius of 

uncertainty around each point. 

• Details on potential errors and biases: We assigned a rough estimate of the 

uncertainty associated with each data record (entering a cave was assigned 200 

m uncertainty; a person in a village was assigned 5–10 km; a general 

description of a region over which a human was infected was assigned 50–170 

km, depending on the density of other major landmarks or political regions). 

Data 

partitioning 

We conducted 10 replicate analyses for each species based on a 50% bootstrap of 

available occurrence data. 

Predictor 

variables 

• Predictor variables: Normalized Difference Vegetation Index (NDVI) 

• Data source: we used the old imagery for NDVI because known filovirus 

outbreaks date back as far as 1976. Specifically, data stem from the AVHRR 

satellite (James and Kalluri, 1994).  

• Spatial resolution: 1 km  



• Map projection: WGS 1984 

• Temporal resolution and extent: We used 12 monthly composite NDVI data 

layers (downloaded, with atmospheric corrections already completed, from 

UMD, 2001) corresponding to February 1995–January 1996 to capture aspects 

of land cover and seasonality. These data layers correspond approximately to 

the midpoint of the time span of filovirus occurrence data used on model 

development. 

• Dimension reduction: Details provided - input NDVI layers were subjected to 

a principal components analysis, to reduce dimensionality and create 

orthogonal input layers. 

MODEL 

Multicollinearity Principal components analysis was used for dimension reduction prior to 

modelling. This reduces collinearity greatly or eliminates it entirely. 

Model settings • Model settings: Maxent, without model selection approaches. Data were 

weighted in effect, based on the uncertainty associated with georeferencing, as 

the random points for highly uncertain points were quite variable. 

Model estimates • Assessment of model coefficients: We used the jackknife option to identify 

variables not contributing importantly to model robustness 

Non-

independence 

analyses 

None. 

Threshold 

selection 

Not used; in light of the small sample sizes available, we generally retained 

continuous model outputs for interpretation and visualization of suitability 

patterns. 

ASSESSMENT 

Performance 

statistics 

None used in light of very small sample sizes. 

Plausibility check No plausibility checks conducted. 

PREDICTION 

Prediction 

output 

• Prediction unit: median logistic output of replicate analyses 

Uncertainty 

quantification 

• Uncertainty in input data: Evaluated carefully in terms of spatial uncertainty 

in geographic coordinates, as a function of information available about the 

origin of each filovirus outbreak. Variation among model replicates was used as 

an index to stability or instability of estimates resulting from modelling 

process. 

  

 

  



S7) Rapacciuolo et al. (2012): SDMs for British birds, butterflies and plants  
 

Rapacciuolo G, Roy DB, Gillings S, Fox R, Walker K, et al. (2012) Climatic Associations of British 

Species Distributions Show Good Transferability in Time but Low Predictive Accuracy for Range 

Change. PLOS ONE 7(7): e40212. https://doi.org/10.1371/journal.pone.0040212 

  

ODMAP element Contents 

OVERVIEW 

Authorship • Authors: Giovanni Rapacciuolo, David B. Roy, Simon Gillings, Richard Fox, Kevin 

Walker, Andy Purvis 

• Contact email: grapacciuolo@calacademy.org 

• Title: Climatic Associations of British Species Distributions Show Good 

Transferability in Time but Low Predictive Accuracy for Range Change 

• DOI: 10.1371/journal.pone.0040212 

Model objective • Objective: Mapping/interpolation and forecast/transfer 

• Target outputs: continuous occurrence probabilities and binary maps of 

potential presence 

Taxon  (i) birds, (ii) butterflies, and (iii) vascular plants 

Location Great Britain 

Scale of analysis • Spatial extent (Lon/Lat): Longitude -7.57°–8.12°, Latitude 49.96°– 58.64° 
• Spatial resolution: British Ordnance Survey 10km grid squares 
• Temporal resolution and extent: Two time periods for birds (t1: 1968–1972; 

t2: 1995–1999), butterflies (t1: 1970–1982; t2: 1988–1991), and vascular plants 
(t1: 1930-1969; t2: 1987-1999) 

• Type of extent boundary: political/natural (coastlines Great Britain) 

Biodiversity data 

overview 

• Observation type: volunteer-based surveys 
• Response/Data type: presence/pseudo-absence data 

Type of 

predictors 

Climatic, (topography and geology not included in final models) 

Conceptual 

model / 

Hypotheses 

We tested whether the most commonly-used SDM algorithms were transferable 

over time by calibrating models using survey data in one time period and 

validating them against survey data in a second time period.  

Assumptions We assumed that species are at pseudo-equilibrium with the environment. We 

assumed that each surveyed grid square in which a species was not recorded (i.e., 

non-detection) represented an absence. 

SDM algorithms • Model algorithms: We built SDMs using 7 presence-absence modelling 

algorithms (classification tree analysis, CTA; generalised linear models, GLMs; 

generalised additive models, GAMs; multi-variate adaptive regression splines, 

MARS; artificial neural networks, ANNs; generalised boosted models, GBMs; and 
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random forests, RFs), two presence-only modelling algorithms (maximum 

entropy, MaxEnt and surface range envelope, SRE) and one ensemble method 

(the mean probability of occurrence from all seven presence-absence modelling 

algorithms). 

• Model complexity: We chose different modelling parameters to optimise each 

statistical technique (see Supporting Information, Appendix S1). Model settings 

were chosen to yield intermediately complex response surfaces but prevent 

excessive overfitting. 

• Model averaging/ensemble: the seven presence-absence modelling 

algorithms were combined in an ensemble 

Model workflow • We used the species-climate associations identified in period t1 to generate 

predictions of each species’ geographic distribution in (a) time period t1 

(interpolation to the same climate used to build the models) and (b) period t2 

(extrapolation to the climate experienced in the more recent period), based on 

observed climate for the corresponding periods. 

• We measured the agreement between predictions in period t2– as generated by 

each of the nine single-models built in period t1 plus the consensus method – 

and observed presence-absence for the corresponding period using three 

alternative measures of prediction accuracy: (i) area under curve (AUC) of the 

receiver operating characteristic (ROC) function, (ii) sensitivity (i.e., proportion 

of correctly-predicted presences), and (iii) specificity (i.e., proportion of 

correctly-predicted absences). 

• We measured the agreement between observations and model predictions of 

each species’ (a) geographic range size in period t2, (b) overall change in 

geographic range size between time periods, and (c) grid square-level changes 

in occupancy status between time periods. 

Software • Software: All analyses were run in the BIOMOD R package version 1.0 (Thuiller et 
al. 2009) using R version 2.13.0. 

• Data availability: N/A 
• Code availability: N/A 

DATA 

Biodiversity data • Taxon names: The full lists of species names surveyed over all time periods are 

available at nbnatlas.org 

• Taxonomic reference system: We follow the taxonomy of the organizations 

responsible for each survey; British Ornithology Trust for birds, Butterfly 

Conservation for butteflies, and the Botanical Society of the British Isles for 

vascular plants 

• Ecological level: population level 

• Biodiversity data source:  

o Birds: We used records for 183 bird species in 2808 British 10km grid squares 

at two time periods (t1: 1968–1972; t2: 1995–1999), corresponding to the 

periods of intensive recording effort leading to the publication of two national 

atlases of butterflies (Sharrock 1976; Gibbons, Reid & Chapman 1993). We 

excluded all species occurring in fewer than 20 10km grid squares across 

Great Britain. 

o Butterflies: We used records for 53 butterfly species in 2808 British 10km grid 

squares at two time periods (t1: 1970–1982; t2: 1988–1991), corresponding 



to the periods of intensive recording effort leading to the publication of two 

national atlases of butterflies (Heath et al. 1984; Asher et al. 2001). We 

excluded all species occurring in fewer than 20 10km grid squares across 

Great Britain. 

o Plants: We used records for 1587 vascular plant species in 2808 British 10 km 

grid squares at two time periods (t1: 1930-1969; t2: 1987-1999), 

corresponding to the periods of intensive recording effort leading to the 

publication of two national atlases of the British flora (Perring & Walters 

1962; Preston et al. 2002). We excluded all species occurring in fewer than 20 

10km grid squares across Great Britain. 

• Sampling design: Data were collected during volunteer-based surveys aimed at 

visiting each 10km grid square at least once in each time period. Many grid 

squares were visited repeatedly during each time period and extra visits were 

organized to survey under-sampled grid squares. 

• Sample size: The bird dataset contained 183 bird species in 2808 10km grid 

squares at two time periods (t1: 1968–1972; t2: 1995–1999).  The butterfly 

dataset contained 53 butterfly species in 2808 10km grid squares at two time 

periods (t1: 1970–1982; t2: 1988–1991). The plant dataset contained 1587 

vascular plant species in 2808 British 10 km grid squares at two time periods 

(t1: 1930-1969; t2: 1987-1999). 

• Country mask: All data were included within the British Ordnance Survey grid 

across the British Isles. 

• Absence data: Although the absence of species from each 10 km grid square 

could not be definitively recorded during sampling, most grid squares surveyed 

in each period (i.e., 92–100% of Great Britain’s 10 km grid squares) were 

meticulously sampled, with high levels of duplicate recording and under-

recorded areas being targeted by extra recording schemes. Thus, we assumed 

that each surveyed grid square in which a species was not recorded (i.e., non-

detection) represented an absence. We acknowledge that sampling extent and 

intensity did vary among surveys and taxonomic groups; we discuss the 

potential implications of this heterogeneity on results. 

Data partitioning No partitioning of calibration data (i.e. t1) was used, since models were validated 

using temporally independent data (i.e. t2). 

Predictor 

variables 

• Predictor variables:  

o Climate: mean temperature of the coldest month (MTCO, °C), mean 

temperature of the warmest month (MTWA, °C), ratio of actual to potential 

evapotranspiration (APET, standard moisture index), potential sunshine 

(PSUN, minutes), total annual precipitation (TPRE, mm), and the difference 

between total winter precipitation and total summer precipitation (PREvar, 

mm) 

o Topography (tested, but not included in final models): median and standard 

deviation of elevation, m 

o Geology (tested, but not included in final models): percentage cover of five 

substrate classes in each 10 km grid square: igneous and metamorphic; peat; 

sedimentary acid; sedimentary basic; and superficial 

• Data sources: Monthly values of temperature, precipitation and cloud cover for 

each year between 1930 and 1999 were obtained from the CRU ts2.1 and the 

CRU 61–90. 

• Spatial resolution and extent of raw data: Climate data were interpolated 



from weather stations at the 10km grid of the species data. 

• Temporal resolution and extent of raw data: Climate data were averaged 

across the time periods corresponding to each species dataset. 

• Data processing:  

o Monthly climate data were used to calculate mean values for nine climate 

variables – separately for each t1 and t2 period – that reflect hypothesised 

physiological constraints on species survival and growth. We also 

considered including additional environmental predictors of ecological 

relevance to our models. First, although changes in land use have been 

identified as fundamental drivers of change for many British species [48–

52], we were unable to account for them in our models – like most other 

published accounts of temporal transferability of SDMs [20,21,24,25] – due 

to the lack of data documenting habitat use in the earlier t1 period; detailed 

digitised maps of land use for the whole of Britain are not available until the 

UK Land Cover Map in 1990 [53].  

o Topography: we derived two topographic variables (median and standard 

deviation of elevation, m) and five geological variables (percentage cover of 

five substrate classes in each 10 km grid square: igneous and metamorphic; 

peat; sedimentary acid; sedimentary basic; and superficial). 

• Dimension reduction: We compared the performance between models built 

using climate predictors vs. Climate and topography predictors. Models 

including geology and topography predictors as well as climate had a higher 

accuracy than models with climate only according to most performance 

measures calculated, including both calibration and validation AUC; however, 

they had a lower mean correct classification rate for squares having changed 

occupancy status between time periods. For this reason, we decided to leave 

both topography and geology variables out from our final models. 

Transfer data To assess temporal transferability in t2, we used records for 183 bird species 

between 1988-1991 (Gibbons, Reid & Chapman 1993), records for 53 butterfly 

species between 1995–1999 (Asher et al. 2001) and records for 1587 vascular 

plant species between 1987-1999 (Preston et al. 2002) across the same 2808 

British 10km grid squares used for calibration. 

MODEL 

Variable pre-

selection 

The six climate variables included in all models were mean temperature of the 

coldest month (MTCO, °C), mean temperature of the warmest month (MTWA, °C), 

ratio of actual to potential evapotranspiration (APET, standard moisture index), 

potential sunshine (PSUN, minutes), total annual precipitation (TPRE, mm), and 

the difference between total winter precipitation and total summer precipitation 

(PREvar, mm). 

Multicollinearity We conducted Spearman’s rank correlations between all pairs of climate 

variables and dropped three variables that were highly correlated with others 

(Spearman’s |ρ| < 0.85) to reduce the risk of overfitting during model calibration. 

The final six climate variables included in the models were mean temperature of 

the coldest month (MTCO, °C), mean temperature of the warmest month (MTWA, 

°C), ratio of actual to potential evapotranspiration (APET, standard moisture 

index), potential sunshine (PSUN, minutes), total annual precipitation (TPRE, 

mm), and the difference between total winter precipitation and total summer 



precipitation (PREvar, mm). 

Models estimates We did not analyse model coefficients in depth. 

Model settings • Classification tree analysis (CTA): CTA was carried out using a 10-fold cross-

validation to select the best trade-off between the number of leaves on the tree 

and the explained deviance. 

• Generalised linear models (GLMs): GLMs were generated assuming a logistic 

link function and a binomial error distribution of the response. Linear, 

quadratic and polynomial terms (second and third order) of each climatic 

predictor were included in the initial models, and a stepwise procedure using 

the AIC criterion was used to select the most significant terms. 

• Generalised additive models (GAMs): GAMs were generated with cubic-smooth 

splines bounded by a degree of smoothness of four for each climatic predictor. A 

stepwise procedure similar to GLMs was used to select the most parsimonious 

models. 

• Multivariate adaptive regression splines (MARS): MARS were fitted with two-

level interactions between predictors. 

• Feed-forward artificial neural networks (ANNs): The accuracy of ANNs is mainly 

controlled by two parameters: the amount of weight decay and the number of 

hidden units. In this analysis, these two parameters were set to 0.03 and 7, 

respectively. Due to their heuristic nature, ANNs were run 10 times for each 

species and the average prediction used. 

• Generalised Boosted Models (GBMs): GBMs were fitted with an interaction 

depth of 4, a learning rate of 0.001, and a maximum of 5000 trees fitted to the 

data. 

• Random Forests (RFs): the number of trees grown were set to 500 and the 

number of predictors to be chosen randomly at each node were set to (total 

number of predictors – 1) 

• Surface range envelopes (SREs): absence locations were only included to the 

species’ potential range if falling within the 2.5- and 97.5-percentiles of the 

species’ environmental envelope.  

• Maximum entropy (MaxEnt): We enabled the use of all six feature classes 

(linear, product, quadratic, hinge, threshold and categorical) for modelling 

species responses to environmental variables. The default value of 1.0 was used 

as the regularization parameter, which affects how closely the training data is 

fitted. 

Model averaging 

/ Ensembles 

We calculated the mean probability of occurrence from all seven presence-

absence modelling techniques (abbreviated Mn(PA)) as a simple but efficient 

consensus method for combining the output of different single-models. 

Non-

independence 

Potential non-independence in the data was not accounted for in the models 

Threshold 

selection 

We selected an appropriate probability threshold to turn continuous 

probabilities of occurrence into binary presence-absence predictions. For each 

model, we calculated the sum of sensitivity and specificity on calibration data (i.e. 

t1) for 100 threshold values (in 0.01 increments), and selected the threshold that 

maximized this sum; this threshold has previously been found to perform well in 

comparisons with others (Jiménez-Valverde & Lobo 2007) .. Predicted 



probabilities of occurrence at time t2 above the selected threshold were 

converted to presences and those below to absences. 

ASSESSMENT 

Performance 

statistics 

• Performance statistics on test (truly independent) data: To quantify the 

transferability of SDMs in time, we measured the agreement between forecasts in 

period t2– as generated by each of the nine single-models built in period t1 plus 

the consensus method – and observed presence-absence for the corresponding 

period using three alternative measures of prediction accuracy (Fielding & Bell 

1997): (i) area under curve (AUC) of the receiver operating characteristic (ROC) 

function, (ii) sensitivity (i.e., proportion of correctly-predicted presences), and 

(iii) specificity (i.e., proportion of correctly-predicted absences). 

Plausibility 

checks 

Maps of modelled predictions were checked by experts for an ad-hoc subset of 

species. 

PREDICTION 

Prediction output • Prediction unit: Quantifying the temporal transferability of SDMs by comparing 

the agreement between model predictions and observations for the predicted 

period using common metrics is not a sufficient test of whether models have 

actually captured relevant predictors of change. A single range-wide measure of 

prediction accuracy conflates accurately predicting species expansions and 

contractions to new areas with accurately predicting large parts of the 

distribution that have remained unchanged in time. Thus, to assess how well 

SDMs capture drivers of change in species distributions, we measured the 

agreement between observations and model predictions of each species’ (a) 

geographic range size in period t2, (b) overall change in geographic range size 

between time periods, and (c) grid square-level changes in occupancy status 

between time periods. We measured the agreement between observed and 

predicted range size in t2 and between observed and predicted overall change 

in range size across time periods using Spearman’s r statistic. To calculate the 

agreement between observed and predicted grid square-level changes in 

occupancy status, we divided binary forecasts into (a) grid squares that had 

either remained occupied or remained unoccupied between time periods and 

(b) grid squares that had changed occupancy status (from occupied to 

unoccupied or vice versa) between time periods. We then measured the correct 

classification rate (CCR; i.e., the sum of true positives and true negatives divided 

by the total number of locations) of grid squares in each of these two subsets for 

each modelling technique, to capture how well our models predict stable versus 

dynamic portions of each species’ distribution. 

Uncertainty 

quantification 

• Algorithmic uncertainty: In addition to predictions from these nine single 

models, we calculated the mean probability of occurrence from all seven 

presence-absence modelling techniques (abbreviated Mn(PA)) as a simple but 

efficient consensus method for combining the output of different single-models 

(Marmion et al. 2009); this approach can reduce model-based uncertainty in 

predictions from SDMs  (Araújo & New 2007). 

  



S8) Schröder et al. (2009): SDMs for two butterfly species 
Schröder B, Strauss B, Biedermann R, Binzenhöfer B, Settele J. 2009. in Ecology of butterflies in 

Europe (Eds. Settele J, Shreeve TG, Konvicka M, Van Dyck H)  62-78, Cambridge University 

Press, Cambridge. 

(re-analysis of Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J. 2005. Habitat 

models and habitat connectivity analysis for butterflies and burnet moths – The example of 

Zygaena carniolica and Coenonympha arcania. Biological Conservation 126, 247-259.). 
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• Contact email: boris.schroeder@tu-bs.de 

• Title: Predictive species distribution modelling in butterflies. 

Model objective • Objective: Mapping/interpolation. The models were used as a case study for 

illustrating recommendations for species distribution modelling. Originally 

(Binzenhöfer et al. 2005), they were developed to provide insights into (i) the 

factors controlling the spatial distribution of the studied species within the study 

area and (ii) to generate habitat suitability maps as a basis for habitat connectivity 

analyses. 

• Target output: continuous occurrence probabilities), habitat suitability maps, 

partial dependence plots. 

Taxon  Butterflies, two species. 

Location Nature reserve "Hohe Wann" in Northern Bavaria, Germany 

Scale of analysis • Spatial extent (Lon/Lat): Longitude 10°35'E, Latitude 50°03'N 

• Spatial resolution: 118 sample plots in the area, 30 × 30 m each 

• Temporal resolution and extent: data collection in 2001 and 2002 

Biodiversity data 

overview 

• Observation type: Visual detections during 15 min survey under optimum 

weather conditions and during the species' main flight period. 

• Response/Data type: presence-absence data. 

Type of 

predictors 

Topopgraphic, land cover, vegetation (host species, cover, height, structure), 

management (disturbance), habitat type, landscape context 

Conceptual 

model / 

Hypotheses 

Hypotheses about species-environment relationships based on previous 

studies: Species are affected by resources (nectar plants), disturbances (land use and 

management), habitat type, terrain, vegetation structure, and landscape context. 

Assumptions We assumed that (i) relevant ecological drivers (or proxies) of species distributions 

are included, (ii) detectability does not change across habitat gradients, (iii) the 

species are at equilibrium with their environment, and (iv) sampling is adequate 

and representative. 

mailto:boris.schroeder@tu-bs.de


SDM algorithms • Algorithms: Logistic regression (generalised linear model GLM with binomial 

error distribution), hierarchical partitioning 

• Model complexity: We allowed quadratic relationships in GLMs, model 

complexity has been reduced by backward stepwise variable selection. Internal 

model validation by bootstrapping revealed only very slight overfitting. 

• Ensembles: N/A 

Model workflow • Original study: according to Hosmer and Lemeshow (2000): univariate analysis 

(identification of predictors with unimodal relationships, combination of 

categories if necessary). Likelihood-ratio-test to identify set of candidate 

predictors for multiple models. Selection of predictors in case of strong correlation 

(Spearman rho values of 0.5). Stepwise backward selection based on likelihood-

ratio-test p-values (pin = 0,05; pout = 0.10). Model evaluation (AUC, R2N, maxkappa); 

model validation by bootstrapping with 300 iterations. Response curves were 

produced for visualisation and understanding. 

• Re-analysis study: Stepwise backward selection based on AIC. Model evaluation 

(AUC with 95%-CI, R2N, kappa, correct classification rate, sensitivity, specificity all 

for maxkappa); model validation by bootstrapping with 1000 iterations (AUC, R2N, 

calibration plot), response curves, regression diagnostics (leverage plots, Cook's 

distance), check for spatial autocorrelation (Moran's I correlograms), variance 

partioning according to Borcard et al. (1992), MacNally & Walsh (2004) and 

Heikkinen et al. (2005). 

Software • Software: All analyses were conducetd using R (no version specified, R Core 

Team) with packages Hmisc (Harrell), lrm (i.e. predecessor of package rms, 

Harrell), hier.part (Walsh & MacNally), spdep (Bivand et al.), ncf (Bjornstad, 2016), 

sp (Pebesma et al.) (original study: SPSS 11.0TM and S-plus 6.1 with Design library 

(Harrell, 2001)(for validation)) 

• Code availability: code was not provided, but is available on demand from the 

authors 

• Data availability: data are not available 

DATA 

Biodiversity data • Taxon names: All (=2) species are given in both publications 

• Taxonomic reference system: We follow the taxonomy of the Red Data Books for 

Bavaria and Germany (e.g. Pretscher, 1998)  

• Ecological level: population level 

• Data source: Butterfly species were identified visually down to the species level 

by a trained surveyor. Plots were surveyed in two transect walks within a period of 

15 min. The surveys were carried out under optimum weather conditions during 

the species main flight periods. 

• Sampling design: sample plots were selected following a random stratified 

scheme. Strata covered a range of six habitat types representing the gradient of 

habitats within the study area. 

• Sample size: The data set contained 118 sample plots (30x30 m2) 

• Absence data: non-observation during two sampling periods in 2001 and 2002 

was treated as absence. 

Data 

partitioning 

No data partitioning was applied, but internal validation by bootstrapping  with 1000 

replicates. 



Predictor 

variables 

• Predictor variables: 

o Topography: slope, sin and cos of exposition, potential solar radiation 

o Land cover: habitat type in six classes (fallow field/intensively managed 

grassland/extensively managed grassland/semi-arid grassland/fringe, 

thermophile/hedges and shrub) 

o Disturbance: Management type in six classes (mowing/cattle grazing and 

mowing/cattle grazing/shepherding/mulching/fallow), date of first annual 

management in five classes (before June 15/before July 15/before August 

15/after August 15/fallow) 

o Vegetation: cover and height of vegetation layers (e.g. trees, shrubs, moss, 

herbs), presence/absence of specific nectar plants (among others: Centaurea 

jacea, Scabiosa columbaria), cover of bare ground 

o Landscape context: e.g. percentage of dry grasslands within a radius of 100 m, 

proportion of hedges within a radius of 25 m, cover of suitable habitat types 

within a radius of 25 m 

• Data sources: All predictor variables related to land use, vegetation and habitat 

type have been sampled during the field campaign, shortly after the butterflies 

have been sampled. Terrain variables have been calculated from a digital elevation 

model with 5 m resolution provided by the Bayerische Vermessungsverwaltung 

• Spatial resolution and extent of raw data: Data were collected and prepared at 

the same resolution as the biodiversity data (30x30 m2-plots). Only habitat type 

and variables derived from the digital elevation model are available for the entire 

area; all other variables were only collected at the sample plots. 

• Temporal resolution and extent of raw data: Environmental data were collected 

directly after sampling butterflies on the plots. 

• Data processing: 

o Topography: slope, exposition and potential solar radiation were based on a 

5 m digital elevation model. Calculations have been carried out with DiGeM 

2.0 a program for digital terrain analysis (Conrad, 1998, 2002) and 

predecessor of SAGA-System for Automated Geoscientific Analyses (saga-

gis.org, Conrad et al., 2015) 

o Landscape context: Variables were calculated based on GIS-analyses of the 

map of habitat types. 

MODEL 

Variable pre-

selection 

Predictors were pre-selected based on their hypothesised ecological relevance for the 

distribution of these butterfly species. 

Multicollinearity We assessed collinearity using spearman rank correlation (Dormann et al., 2013). In 

case of Spearman rho values > 0.5 (Fielding& Haworth, 1995) only one predictor of 

the correlated ones was selected (i.e. the one with best performance in a univariate 

model). 

Model settings  From the set of candidate predictors, we estimated univariate GLMs as well as GLMs 

with linear and quadratic terms (original study) according to (Hosmer & Lemeshow 

2000).  

Model selection Backward selection based on AIC 

Model estimates We analysed model coefficients by comparing univariate and mutiple models, and we 

assessed the importance of predictors by hierarchical partitioning (Heikkinen et al. 



2005). 

Non-

independence  

Spatial autocorrelation in model residuals was assessed using spline correlograms in 

the R package “ncf” (Bjornstad, 2016). (not original study, but re-analysis). 

Threshold 

selection 

Binary predictions for mapping and further calculations we used a threshold 

maximising kappa (Liu et al. 2005).  

ASSESSMENT 

Performance 

statistics 

Model evaluation (AUC with 95%-CI, R2N, kappa, correct classification rate, 

sensitivity, specificity - all for maxkappa); 

Model validation by bootstrapping with 1000 iterations (AUC, R2N, calibration plot), 

Additionally: regression diagnostics (leverage plots, Cook's distance), and check for 

spatial autocorrelation (Moran's I correlograms, cf. Dormann et al., 2007) 

Plausibility 

checks 

We checked model plausibility by assessing partial dependence plots. 

PREDICTION 

Prediction 

output 

Models based on area-wide available predictors were used to produce habitat 

suitability maps depicting occurrence probabilities. Binarised maps were used as the 

basis for graph-theory-based habitat connectivity analysis (Keitt et al. ,1997). 

Uncertainty 

quantification 

N/A 
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S9) Zurell et al. (2020): SDMs and JSDMs for Swiss forest birds and Swiss tree 

species 
 

Zurell D, Zimmermann NE, Gross H, Baltensweiler A, Sattler T, Wüest R (2020) Testing species 

assemblage predictions from stacked and joint species distribution models. Journal of 

Biogeography 47: 101-113. 

 

Background to case study:  

This case study compared stacked species distribution models (S-SDMs) and joint species 

distribution models (JSDMs) in their ability to predict species assemblages. SDMs and JSDMs 

were used to predict the occurrence probabilities of different species. These predictions were 

then combined into species assemblage predictions using different approaches. Specifically, the 

study tested the effect of different stacking procedures (binary vs. probabilistic), the effect of 

applying macroecological constraints and ecological assembly rules, and the effect of bias 

correction in macroecological constraints on the accuracy of species assemblage predictions.  

Below, we provide an example of how the Overview section could be formulated for the 

methods part of the main manuscript as well as the corresponding ODMAP table to be included 

in Online Supplementary Information. 

Text example Overview section: 

We describe the SDMs and JSDMs following the ODMAP (Overview, Data, Model, Assessment, 

Prediction) protocol for species distribution models. Here, we provide the Overview of the 

distribution models while the remaining ODMAP sections are detailed in Table S9.1 in the 

Supplementary Information. 

The model objective for SDMs and JSDMs was to predict single species occurrence in space, both 

as continuous occurrence probabilities as well as binary maps of potential presence. For later 

analyses, these single species maps were stacked to predict species assemblages. SDMs and 

JSDMs were fitted for (i) forest bird species and (ii) bush and tree species in Switzerland. We 

restricted the models to the political boundaries of Switzerland (spatial extent: Longitude 5.76° 

E - 8.12° E, Latitude 45.70° N – 47.93° N). Bird presence-absence data at a 1x1 km spatial 

resolution were obtained from standardised monitoring carried out for the Swiss breeding bird 

atlas (Schmid et al., 1998), recorded over a four-year period (1993-1996). Tree species 

presence-absence data were obtained from standardised monitoring carried out for the Swiss 

National Forest Inventory (NFI) carried out between 2004-2006, and were aggregated to 

100x100 m plot size to match the minimum grain of available environmental data.  

We assumed that detection errors were negligible.  Previous analyses of the Swiss breeding bird 

data have shown that the sampling approach ensures high species detectability of 

approximately 90% (Kéry & Schmid, 2006). In the forest inventory, tree individuals below a 

certain diameter at breast height are not recorded and we assume that this procedure does not 

bias the species identification.  



Based on previous studies, we selected climate, topography and vegetation structure as 

important environmental predictor variables for bird and tree species in Switzerland. SDMs and 

JSDMs were estimated using presence/absence data as response variable to predict species-

specific occurrence probabilities per site. Additionally, we estimated SDMs using species 

richness as response variable to predict species richness per site, which then served as 

macroecological constraint for the application of ecological assembly rules. SDMs and richness 

models were fitted using four different algorithms: generalised linear models (GLM), 

generalised additive models (GAM), boosted regression trees (BRT), and random forests (RF) 

with a binomial error distribution (with logit link) for SDMs and a Poisson error distribution 

(with log link) for richness models.  JSDMs were fitted with a latent variable model and a 

binomial error distribution (with probit link). Model settings were chosen to yield 

intermediately complex response surfaces.  

Prior to model building, all predictor variables were standardised. In each model, we only 

included the five most important and weakly correlated variables. Univariate variable 

importance for each predictor was assessed in a 5-fold spatial block cross-validation design. 

Ensemble predictions from SDMs and richness models were derived using un-weighted 

ensemble means. Predictive model performance was assessed using a 5-fold spatial block cross-

validation.  

All analyses were conducted using R version 3.3.2 (R Core Team, 2016) with packages 

sperrorest (Brenning, 2012), mgcv (Wood, 2011), gbm (Ridgeway, 2013), dismo (Hijmans et al., 

2017), randomForest (Liaw & Wiener, 2002), boral (Hui, 2016), ncf (Bjornstad, 2016), 

PresenceAbsence (Freeman & Moisen, 2008), ecospat (Broennimann et al., 2016) and lme4 

(Bates et al., 2015). All codes are provided in the Online Supplementary Information and on 

github (https://github.com/damariszurell/SSDM-JSDM).  Data are available from Dryad 

(https://doi.org/10.5061/dryad.k88v330).  

 

Supplementary Table S9.1. ODMAP protocol. Details on Data, Model, Assessment, Prediction. 

For Overview section, please refer to main text. 
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Authorship • Authors: Damaris Zurell, Niklaus E. Zimmermann, Helge Gross, Andri 

Baltensweiler, Thomas Sattler, Rafael O. Wüest 

• Contact email: damaris@zurell.de 

• Title: Testing species assemblage predictions from stacked and joint species 

distribution models 

• DOI: 10.1111/jbi.13608 

Model objective • Objective: Mapping/interpolation 

• Target outputs: continuous occurrence probabilities and binary maps of 

potential presence 

Taxon • (i) forest bird species, and (ii) bush and tree species 

https://github.com/damariszurell/SSDM-JSDM
https://doi.org/10.5061/dryad.k88v330
mailto:damaris@zurell.de


Location Switzerland 

Scale of analysis • Spatial extent (Lon/Lat): Longitude 5.76° E - 8.12° E, Latitude 45.70° N – 

47.93° N 

• Spatial resolution: (i) 1 km x1 km for forest bird species, and (ii) 100 m x 100 m 

for bush and tree species 

• Temporal resolution and extent: We just modelled a single time slice for birds 

(1993-1996) and for trees (2004-2006). 

• Type of extent boundary: political (Switzerland) 

Biodiversity data 

overview 

• Observation type: standardised monitoring 

• Response/Data type: presence/absence data 

Type of predictors • Climatic, topographic, vegetation structure 

Conceptual model 

/ Hypotheses 

• Based on previous studies, we tested climate, topography and vegetation 

structure as important environmental predictor variables for bird and tree 

species in Switzerland in an exploratory way. 

Assumptions We assumed that species are at pseudo-equilibrium with the environment. Also, 

we assumed that detection errors were negligible. Previous analyses of the Swiss 

breeding bird data have shown that the sampling approach ensures high species 

detectability of approximately 90% (Kéry & Schmid, 2006). In the forest inventory, 

tree individuals below a certain diameter at breast height are not recorded and we 

assume that this procedure does not bias the species identification. 

SDM algorithms • Algorithms: SDMs and richness models were fitted using four different 

algorithms: generalised linear models (GLM), generalised additive models 

(GAM), boosted regression trees (BRT), and random forests (RF) with a 

binomial error distribution (with logit link) for SDMs and a Poisson error 

distribution (with log link) for richness models.  JSDMs were fitted with a latent 

variable model and a binomial error distribution (with probit link).  

• Model complexity: Model settings were chosen to yield intermediately complex 

response surfaces. We allowed quadratic relationships in GLMs and JSDMs, and 

restricted GAMs, BRTs and RFs such that these would not overfit too much. 

• Ensembles: We combined the four SDMs to ensemble SDM predictions. 

Model workflow Prior to model building, all predictor variables were standardised. In each model, 

we only included the five most important and weakly correlated variables. 

Univariate variable importance for each predictor was assessed in a 5-fold spatial 

block cross-validation design. Ensemble predictions from SDMs and richness 

models were derived using un-weighted ensemble means. Predictive model 

performance was assessed using a 5-fold spatial block cross-validation. 

Software • Software: All analyses were conducted using R version 3.3.2 (R Core Team, 

2016) with packages sperrorest (Brenning, 2012), mgcv (Wood, 2011), gbm 

(Ridgeway, 2013), dismo (Hijmans et al., 2017), randomForest (Liaw & Wiener, 

2002), boral (Hui, 2016), ncf (Bjornstad, 2016), PresenceAbsence (Freeman & 

Moisen, 2008), ecospat (Broennimann et al., 2016) and lme4 (Bates et al., 2015).  

• Code availability: All codes were provided in the Online Supplementary 

Information and on github (https://github.com/damariszurell/SSDM-JSDM).  

• Data availability: Data are available from Dryad 

https://github.com/damariszurell/SSDM-JSDM


(https://doi.org/10.5061/dryad.k88v330).  

DATA 

Biodiversity data • Taxon names: All species are listed in Table S1 and S2 of the original 

publication.  

• Taxonomic reference system: We follow the taxonomy of the Swiss breeding 

bird atlas and the Swiss National Forest Inventory. 

• Ecological level: population level 

• Data source: Bird presence-absence data at a 1x1 km spatial resolution were 

obtained from the Swiss breeding bird atlas (Schmid et al., 1998). Tree species 

presence-absence data were obtained from the Swiss National Forest Inventory 

(NFI).  

• Sampling design: Bird atlas data were recorded over a four-year period (1993-

1996) in usually three visits per year (two above the treeline) using a simplified 

territory mapping approach. The NFI samples Switzerland on a regular grid 

(spacing 1.4 km), and in case the sample falls into forest it records forest 

characteristics in a maximal area of 50x50 m (Brassel & Lischke, 2001).  

• Sample size: The bird data set contained 2535 1x1 km cells with a total number 

of 56 forest bird species and prevalence ranging 0.03-0.73.  The tree data set 

contained 6946 100x100 m cells with a total number of 63 tree and shrub 

species and prevalence ranging 0.01-0.79. 

• Country mask: we clipped all data to the political boundary of Switzerland. 

• Scaling: We aggregated the NFI presence-absence data to 100x100 m plot size 

to match the minimum spatial grain of available environmental data.  

• Data filtering: We only considered species with at least 50 presences.  

• Absence data: The Swiss breeding bird atlas and the NFI contains presence and 

absence data. In the Swiss breeding bird data, species are listed as absent in a 

site if they were not encountered within the 2-3 visits per breeding season in 

the four successive years of recording. Previous analyses have shown that this 

sampling approach ensures high species detectability of approximately 90% 

(Kéry & Schmid, 2006). In the NFI plots, all tree and bush individuals above a 

certain diameter at breast height are recorded. We have no information about 

potential species biases in unrecorded small trees and bushes. 

Data partitioning We randomly selected 70% of data (1774 cells for birds and 4862 for tree species) 

for model building and 30% (761 cells for birds and 2084 cells for tree species) for 

validation of the community predictions. Predictive model performance for single 

species was assessed using a 5-fold spatial block cross-validation design. 

Therefore, for each dataset we split the study region into five rectangular tiles (R 

package “sperrorest”). The resulting sample sizes per tile ranged 222-568 cells for 

forest birds and 570-1440 cells for tree species. 

Environmental 

data/predictor 

variables 

• Predictor variables:  

o Topography: slope, aspect, topographic position index (TPI), topographic 

wetness index (TWI), potential monthly solar radiation 

o Climate: 19 bioclimatic predictors, degree days, potential 

evapotranspiration (PET), moisture balance (MBAL), moisture index 

(MIND) 

o Vertical vegetation structure: LiDAR-derived average height, height 

standard deviation, height coefficient of variation, as well as 10th, 25th 

https://doi.org/10.5061/dryad.k88v330


and 95th height percentiles, canopy cover (COV), canopy density (DNS), 

foliage height diversity (FHD), understory height diversity (UHD) 

o Horizontal vegetation structure (for bird data only): edge length between 

two height classes, clumpiness for different height classes 

• Data sources: We prepared the environmental predictor variables climate, 

topography and LiDAR-derived vegetation structure. Monthly average climate 

data were obtained from the Federal Office of Meteorology and Climatology 

MeteoSwiss (www.meteosuisse.ch). Topography and LiDAR data were obtained 

from the Swiss Federal Office of Topography. 

• Spatial resolution and extent of raw data: The raw resolution of topography 

and climate was 100 m. The raw LIDAR point clouds had a nominal footprint of 

0.3 m. Data were prepared at the same resolution as the species data, meaning 

at 1x1 km for analyses of forest birds and at 100x100 m for analyses of tree 

species.  

• Temporal resolution and extent of raw data: Climate data stem from the 

period 1981-1990. LiDAR raw data were measured in the years 2000–2007. 

• Geographic projection: Swiss coordinate system (Swiss grid) 

• Data processing:  

o Topography: Slope, aspect, TPI and TWI (Wilson & Gallant, 2000) were based 

on a 100 m digital elevation model. TPI in a cell corresponds to the difference 

of the focal cell to the mean of its eight surrounding cells, with negative 

values indicating a depression,  positive values a rise. Potential monthly solar 

radiation was calculated following Hofierka et al. (2002).  

o Climate: Monthly average climate data for the period 1981-1990 were 

generated by interpolating ca. 300 MeteoSwiss station data to a resolution of 

100x100m using the Daymet software (Thornton et al., 1997). From these, 

we derived 19 bioclimatic predictors (http://worldclim.org/bioclim) as well 

as so-called degree days. Degree days constitute the sum of all monthly 

temperature values greater than a given threshold temperature multiplied 

by the total number of days (with thresholds 0°C and 5°C for DDEG0 and 

DDEG5). We calculated PET using radiation as proposed by Makkink (1957), 

as this method was shown to best approximate PET in Switzerland (Xu & 

Singh, 2002). For precipitation and PET we calculated summer (April to 

September) and winter (October to March) averages as well as their ratio. 

We calculated the MBAL as the difference between precipitation and PET, 

and MIND as the ratio between PET and precipitation. For the analyses of 

forest bird species, the topographic and climatic data were aggregated to 1x1 

km grids using the mean as aggregate-function such that the grid cell-size 

matched the bird survey data.  

o Vertical vegetation structure: LiDAR-derived data was processed with the 

LAStools software (Isenburg, 2015). The Swiss-wide LiDAR dataset consists 

of discrete first and last pulse returns with a nominal footprint of 0.3 m and a 

point density of 0.5 points/m2 (Artuso et al., 2003). LiDAR variables were 

generated separately as raster datasets for both the 100x100 m grid that 

matches the tree species NFI data, as well as the 1x1 km grid that matches 

the bird survey data. From the terrain corrected and classified LiDAR point 

cloud (heights of classified vegetation LiDAR returns minus interpolated 

DTM heights), we calculated the average height, their standard deviation and 

coefficient of variation as well as the corresponding 10th, 25th and 95th 

percentiles per 100 m and 1 km pixel, respectively. In addition, we also 



derived the canopy cover (percentage of first returns above 1m; COV) and 

canopy density (ratio of all returns above 1m divided by all returns; DNS). 

We further calculated both standard deviation and coefficient of variation in 

order to characterize vertical variation in LiDAR returns. In addition, we 

estimated the so-called foliage height diversity (FHD), which is the Shannon 

diversity index based on 5m vertical bins as H = pi ln(pi), where pi is the 

proportion of LiDAR returns in the 5m bin i. Additionally, we calculated 

understory height diversity (UHD) for the 1x1 km grid as we considered 

these important predictors for bird distributions in Swiss forests. UHD was 

derived analogously to FHD but using 1m bins restricted to below 12m 

(Zellweger et al., 2016) as well as the ratio between the 95th and 25th 

percentile. 

o Horizontal vegetation structure: For the bird data at 1x1 km resolution, we 

derived LiDAR variables accounting for edge effects and fragmentation in 

order to describe the horizontal structural heterogeneity of the vegetation 

(Zellweger et al., 2013). Based on the terrain corrected LiDAR point cloud we 

generated a gridded Canopy Height Model (CHM) with a grid size of 20 m. 

The CHM was classified into three classes, which are non-forest (vegetation 

height < 1m), understory/midstory (1 – 12m) and canopy (> 12m). The 

length of edges between two height classes (e.g. non-forest/canopy) was 

calculated for each grid cell and summed up for the 1x1 km grid of the bird 

survey data. To measure the spatial dispersion or aggregation of the 

vegetation height classes understory/midstory and canopy, a clumpiness 

index was calculated for the 1x1 km grid using the software FRAGSTATS 

(McGarigal et al., 2012). 

o Because the forest bird data were recorded 1993-1996 and the LiDAR data 

were recorded after 2000, there is a temporal mismatch between species 

data and vegetation data. Generally, the forest laws in Switzerland are very 

strict and we can, thus, rule out any major changes in the vegetation 

structure between these two periods.  The main exception is storm damage 

due to the cyclone “Lothar” in 1999. In storm-damaged sites we can expect 

differences in vegetation structure between the recording periods of the bird 

survey data (before the cyclone) and the LiDAR data (after the cyclone). 

Hence, we removed all storm-damaged sites (n=10) from the analyses to 

avoid mismatches in vegetation structure. 

MODEL 

Variable pre-

selection 

In each model, we only included the five most important and weakly correlated 

variables obtained from the cross-validated univariate variable importance. 

Multicollinearity We reduced the predictor set to variables with bivariate Spearman correlations 

|r|<0.7, retaining those variables from highly correlated pairs with higher cross-

validated univariate importance (Dormann et al., 2013).  Univariate variable 

importance for each predictor was assessed in a 5-fold spatial block cross-

validation design by estimating univariate GAMs on 4 of 5 folds (with logit link for 

species occurrences and log link for species richness) and cross-predicting these 

to the left-out fold with 5 repetitions. From the cross-predictions, we calculated 

the percentage of explained deviance. We thus obtained a predictor ranking for 

each single species and removed the less important variables from pairs of highly 

correlated variables. However, JSDMs require a global set of predictor variables 



and we thus selected those five variables with highest mean cross-validated 

univariate importance among all species. SDMs and richness models were run 

with the same set of global predictors as in JSDMs.  In a sensitivity analysis we 

additionally estimated SDMs and richness models using the five most important 

variables selected individually for each species and species richness, respectively. 

This did not change the overall results. 

Model settings • Model settings SDMs and richness models:  GLMs were fitted with linear and 

quadratic terms and GAMs were fitted with nonparametric cubic smoothing 

splines with up to four degrees of freedom. BRTs were estimated with a tree 

complexity of 2, a bag fraction of 0.75 and a variable learning rate such that 1000-

5000 trees were fitted (Elith et al., 2008). Random forests were fitted with 1000 

trees, and a minimum nodesize of 20.  

• Model settings JSDMs: JSDMs were fitted with a latent variable model and a 

binomial error distribution (with probit link) (with R package “boral”; Hui, 2016). 

In all JSDMs we included linear and quadratic terms and five latent variables. For 

forest bird species, JSDMs were run with 50000 iterations, a burnin of 20000 and 

a thinning rate of 50. For tree species, JSDMs were run with 100000 iterations, a 

burnin of 50000 and a thinning rate of 50. Convergence was assessed using the 

Geweke convergence diagnostic. 

Model estimates We did not analyse model coefficients in depth, but compared for each species 

how often each predictor was selected among the five most important variables. 

Model averaging 

/ Ensembles 

Consensus predictions from SDMs and richness models, respectively, were 

generated using un-weighted ensemble means. 

Non-

independence 

Spatial autocorrelation in model residuals was assessed using spline correlograms 

in the R package “ncf” (Bjornstad, 2016). 

Threshold 

selection 

Binary predictions were derived by using the TSS (true skill statistic)-

maximisation threshold. Maximising TSS is equivalent to maximising the sum of 

sensitivity and specificity. 

ASSESSMENT 

Performance 

statistics 

Predictive model performance on validation data (based on the 5-fold spatial 

block cross-validation) was assessed using four different performance measures: 

area under the receiver operating characteristic curve (AUC), true skill statistic 

(TSS), sensitivity and specificity. The latter three measures constitute threshold-

dependent performance measures and we calculated them using a TSS-

maximisation threshold. 

Plausibility 

checks 

In our pre-analyses, we used inflated response curves to understand model 

behaviour for different parameter settings, and based on these checks decided for 

intermediate model complexity. 

PREDICTION 

Prediction output Prediction unit: For further analyses, we used continuous predictions of 

occurrence probability per species and site as well as predicted presence per 

species and site that was obtained by binarising the predicted occurrence 

probabilities using the TSS-maximisation threshold. 



Uncertainty 

quantification 

In SDMs, we accounted for algorithmic uncertainty by applying an ensemble 

approach averaging over four different SDM algorithms. In a sensitivity analysis, 

we also compared predictions from GLMs only against JSDMs. 
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