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Abstract
Aim: Predicting the spatial distribution of species assemblages remains an impor‐
tant challenge in biogeography. Recently, it has been proposed to extend correlative 
species distribution models (SDMs) by taking into account (a) covariance between 
species occurrences in so‐called joint species distribution models (JSDMs) and (b) 
ecological assembly rules within the SESAM (spatially explicit species assemblage 
modelling) framework. Yet, little guidance exists on how these approaches could be 
combined. We, thus, aim to compare the accuracy of assemblage predictions derived 
from stacked and from joint SDMs.
Location: Switzerland.
Taxon: Birds, tree species.
Methods: Based on two monitoring schemes (national forest inventory and Swiss 
breeding bird atlas), we built SDMs and JSDMs for tree species (at 100 m resolution) 
and forest birds (at 1 km resolution). We tested accuracy of species assemblage and 
richness predictions on holdout data using different stacking procedures and eco‐
logical assembly rules.
Results: Despite minor differences, results were consistent between birds and tree 
species. Cross‐validated species‐level model performance was generally higher in 
SDMs than JSDMs. Differences in species richness and assemblage predictions were 
larger between stacking procedures and ecological assembly rules than between 
stacked SDMs and JSDMs. On average, predictions were slightly better for stacked 
SDMs compared to JSDMs, probabilistic stacks outperformed binary stacks, and 
ecological assembly rules yielded best predictions.
Main conclusions: When predicting the composition of species assemblages, the 
choice of stacking procedure and ecological assembly rule seems more decisive than 
differences in underlying model type (SDM vs. JSDM). JSDMs do not seem to im‐
prove community predictions compared to SDMs or improve predictions for rare 
species. Still, JSDMs may provide additional insights into community assembly and 
may help deriving hypotheses about prevailing biotic interactions in the system. We 
provide simple rules of thumb for choosing appropriate modelling pathways. Future 
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1  | INTRODUC TION

Quantifying the reasons why species inhabit some places but not 
others remains a central question in biogeography. In recent de‐
cades, we have seen increasing interest in species distributions 
modelling and quantitative predictions of where species and commu‐
nities can be found (D'Amen, Rahbek, Zimmermann, & Guisan, 2017; 
Zimmermann, Edwards, Graham, Pearman, & Svenning, 2010). Such 
predictions have aided, for example, reserve selection (Kremen et al., 
2008), impact assessments (Thuiller et al., 2014) and invasive spe‐
cies management (Dullinger et al., 2017). This development has been 
spurred by an increasing availability of environmental and biodiver‐
sity data, for example through remote sensing, open‐access data‐
bases and citizen science. Also, modelling techniques have advanced 
and new modelling platforms are introduced continually. However, 
the wealth of possibilities may also complicate modelling choice and 
different model techniques and frameworks should be benchmarked 
and tested (continually) to guide practitioners and policy makers.

In this study, we are particularly interested in spatial predic‐
tions of community attributes, primarily in the composition but 
also in the richness of local communities. Such predictions could 

be of special interest for species conservation and reserve design. 
Different spatiotemporal processes influence community assembly 
(HilleRisLambers, Adler, Harpole, Levine, & Mayfield, 2012). The re‐
gional species pool is constrained by (evolutionary and biogeograph‐
ical) history, the local species pool by dispersal and other stochastic 
events. Only a subset of the local species pool will then be present 
in the realized assemblage (Sattler, Obrist, Duelli, & Moretti, 2011). 
Often, this is metaphorically described as species passing through 
an abiotic niche and a biotic niche filter (Figure 1; Götzenberger 
et al., 2012). How we could predict local community richness and 
composition still remains a challenge even though different model‐
ling frameworks have been proposed (D'Amen et al., 2017; Ferrier 
& Guisan, 2006). Correlative species distribution models (SDMs) 
constitute the most widely used tool to predict single species distri‐
butions under current and future environments (Elith & Leathwick, 
2009; Guisan & Thuiller, 2005; Guisan & Zimmermann, 2000). The 
apparent and logical next step is then to overlay these single species 
predictions to obtain community assemblage predictions in so‐called 
stacked species distribution models (S‐SDMs) (Guisan & Rahbek, 
2011). However, SDMs ignore (or only implicitly consider) biotic in‐
teractions (Kissling et al., 2012; Wisz et al., 2013) and, thus, cannot 

studies should test these preliminary guidelines for other taxa and biogeographical 
realms as well as for other JSDM algorithms.

K E Y W O R D S

AUC, community assembly, community composition, ecological niche, habitat suitability 
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F I G U R E  1  Schematic representation of the conceptual framework and our modelling workflow for comparing assemblage prediction 
success. Left panel: The spatially explicit species assemblage modelling (SESAM) framework applies successive modelling steps to imitate the 
filtering cascade of community assembly (steps 1, 2a, 3–4; adapted from Guisan & Rahbek, 2011). Joint species distribution models (JSDMs; 
step 2b) should yield information on both abiotic and biotic constraints. Right panel: The modelling workflow exemplifies how species 
distribution models (SDMs) and JSDMs could be stacked to directly yield assemblage predictions and how macroecological constraints (with 
or without bias correction) are used to inform the ecological assembly rules (here, probability ranking rule)
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account for the biotic niche filter in community assembly (Guisan 
& Rahbek, 2011). More recently, joint species distribution models 
(JSDMs) have been developed that incorporate species co‐occur‐
rence data into SDMs and can thus provide a bridge between spe‐
cies distribution modelling and community ecology (Pollock et al., 
2014; Warton et al., 2015). Hitherto, not many studies have explic‐
itly compared SDM and JSDM model performance, and the ability 
of S‐SDMs and JSDMs to predict species assemblages (Harris, 2015).

Joint species distribution models simultaneously estimate the 
species‐environment relationship of multiple species and the resid‐
ual correlation between those species that could be indicative of bi‐
otic interactions (Zurell, Pollock, & Thuiller, 2018), but also missing 
environmental information and other ecological processes. Similar 
to SDMs, JSDMs generate site‐level occurrence probabilities of the 
different species, which have to be combined (“stacked“) in order to 
yield predictions of local community composition. Previous studies 
on S‐SDMs have shown that the choice of stacking procedure is non‐
trivial. Binary stacks, for which a threshold is applied to transform 
continuous species occurrence probabilities to binary maps prior to 
stacking, often lead to overprediction of species richness (D'Amen, 
Dubuis, et al., 2015; Dubuis et al., 2011), but not always (D'Amen, 
Pradervand, & Guisan, 2015; Zurell, Zimmermann, Sattler, Nobis, & 
Schröder, 2016). This overprediction of species richness has been at‐
tributed to biotic interactions that limit realized assemblages (Guisan 
& Rahbek, 2011) while other authors argue that thresholding site‐
level occurrence probabilities generally leads to statistical bias, which 
in turn causes overprediction (Calabrese, Certain, Kraan, & Dormann, 
2014). Rather, it has been suggested that probabilistic stacking, for 
which species presences are obtained from repeated Bernoulli trials 
(Calabrese et al., 2014; Dubuis et al., 2011; Pottier et al., 2013) should 
be preferred over binary stacking (Calabrese et al., 2014). However, 
probabilistic stacking (as well as macroecological models, MEMs, that 
directly relate species richness to environmental predictors, Guisan 
& Rahbek, 2011) often lead to overprediction of low species richness 
and underprediction of high species richness, which can partially be 
explained by (sub‐scale) environmental heterogeneity and species' 
prevalence (Zurell et al., 2016). Simply summing the predicted oc‐
currence probabilities, which has been proposed as the statistically 
most correct way of stacking (Calabrese et al., 2014) impedes the 
analysis of turnover analyses in space or time, as the output does 
not explicitly reveal species identities. While the accuracy of species 
richness predictions has been assessed (Dubuis et al., 2011), no study 
has compared the accuracy of assemblage predictions between bi‐
nary and probabilistic (Bernoulli trial) stacking methods, even though 
data on community composition are crucial for adequately assessing 
potential species turnover in response to global change impacts or 
for prioritizing conservation actions (Pollock, Thuiller, & Jetz, 2017).

Guisan and Rahbek (2011) proposed the SESAM (“spatially ex‐
plicit species assemblage modelling”) framework to overcome the 
richness overprediction of binary S‐SDMs and to account for biotic 
filtering. SESAM applies successive filters to select how many and 
which species from the local species pool could be present in the 
realized assemblages (Figure 1). Specifically, Guisan and Rahbek 

(2011) propose to use SDMs as abiotic niche filter, and macroecolog‐
ical constraints and ecological assembly rules as biotic niche filter. 
Recent applications indicate that the SESAM framework could im‐
prove assemblage predictions compared to binary S‐SDMs (D'Amen, 
Dubuis, et al., 2015; D'Amen, Pradervand, et al., 2015). Nevertheless, 
Calabrese et al. (2014) caution that SESAM could be of limited value 
if the species richness predictions (used as macroecological con‐
straint, Figure 1) are strongly biased for low and high species rich‐
ness sites. To overcome this bias, Calabrese et al. (2014) proposed 
a maximum‐likelihood approach to adjust site‐level occurrence 
probabilities based on observed or estimated species richness. To 
our knowledge, it has not been tested whether this bias correction 
improves the accuracy of assemblage predictions. Also, it is unclear 
where JSDMs can be placed in the SESAM framework and whether 
assemblage predictions from JSDMs will also, similar to S‐SDMs, 
yield improved accuracies when applying additional biotic filters.

Thus, we propose to compare S‐SDMs and JSDMs in their ability 
to predict species assemblages. Specifically, we test the effect of 
different stacking procedures (binary vs. probabilistic), the effect of 
applying macroecological constraints and ecological assembly rules 
(as proposed in the SESAM framework), and the effect of bias cor‐
rection in macroecological constraints (as proposed by Calabrese et 
al., 2014; Figure 1). As case studies, we use data from Swiss breeding 
bird atlas (Schmid, Luder, Naef‐Daenzer, Graf, & Zbinden, 1998) and 
from Swiss forest inventory (Brassel & Lischke, 2001) that constitute 
monitoring schemes of high quality and high detection probabilities.

2  | MATERIAL S AND METHODS

2.1 | Species and environmental data

Two different taxonomic groups were selected as study systems 
to test the different modelling choices: (a) forest birds and (b) bush 
and tree species of Switzerland. We assume that all species in 
Switzerland can be summarized in the same local species pool and 
are not further constrained by historical differences or dispersal lim‐
itations (Figure 1). We selected climate, topography and vegetation 
structure as environmental predictor variables.

2.2 | Breeding birds

Bird presence–absence data were obtained from the Swiss breeding 
bird atlas at a 1 × 1 km resolution (Schmid et al., 1998). These data 
were recorded over a 4‐year period (1993–1996) in usually three 
visits per year (two above the tree line) using a simplified territory 
mapping approach. Previous analyses have shown that this approach 
ensures high species detectability of approximately 90% (Kéry & 
Schmid, 2006). We concentrate on forest birds to minimize problems 
associated with missing environmental covariates, the magnitude of 
which could differ among species of different broad habitat types 
(Zurell et al., 2016). To avoid overfitting for rare species (Breiner, 
Guisan, Bergamini, & Nobis, 2015), we only considered species with 
at least 50 presences resulting in a total number of 56 forest bird 
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species in the study region (Table S1). Overall, many forest bird spe‐
cies were rather common (Figure S1).

2.3 | Forest inventory

Tree species presence–absence data were obtained from the Swiss 
National Forest Inventory (NFI). The NFI samples Switzerland on a 
regular grid (spacing 1.4 km), and in case the sample falls into forest it 
records forest characteristics in a maximal area of 50 × 50 m (Brassel 
& Lischke, 2001). We aggregated the NFI presence–absence data to 
100 × 100 m plot size to match the minimum grain of available envi‐
ronmental data (details see below). Analogously to the breeding bird 
data, we only considered species with at least 50 presences resulting 
in a total number of 63 tree and shrub species in the study region 
(hereafter referred to as tree species; Table S2). Overall, many tree 
species were rare with the majority of species showing a prevalence 
below 10% (Figure S1).

2.4 | Environmental data

We prepared the environmental predictor variables climate, to‐
pography and vegetation structure at the same resolution as the 
species data, meaning at 1 × 1 km for analyses of forest birds and 
at 100 × 100 m for analyses of tree species. Topography was rep‐
resented using Slope, Aspect, the Topographical Position Index 
(TPI) and Topographical Wetness Index (TWI) (Wilson & Gallant, 
2000) based on a 100 m digital elevation model. TPI in a cell cor‐
responds to the difference of the focal cell to the mean of its eight 
surrounding cells, thus indicating whether the cell is in a depres‐
sion (negative values) or in a rise (positive values). We further cal‐
culated potential monthly solar radiation as outlined in Hofierka, 
Suri, and Šúri (2002). Monthly average climate data for the period 
1981–1990 were generated by interpolating station data from the 
Federal Office of Meteorology and Climatology MeteoSwiss to a 
resolution of 100 × 100 m using the daymet software (Thornton, 
Running, & White, 1997). From these monthly averages, we de‐
rived a set of 19 bioclimatic predictors (http://world​clim.org/bio‐
clim) as well as so‐called degree days. Degree days constitute the 
sum of all monthly temperature values greater than a given thresh‐
old temperature multiplied by the total number of days (where 
thresholds 0 and 5°C were applied for DDEG0 and DDEG5). We 
further calculated potential evapotranspiration (PET) using radia‐
tion as proposed by Makkink (1957), as this method was shown 
to best approximate PET in Switzerland (Xu & Singh, 2002). For 
both precipitation and PET we also calculated summer (April–
September) and winter (October–March) averages as well as their 
ratio. We further used PET and precipitation data to calculate the 
moisture balance (MBAL) as the difference between precipita‐
tion and PET, and the moisture index (MIND) as the ratio between 
PET and precipitation. For the analyses of forest bird species, the 
topographical and climatic data were aggregated to 1 × 1 km grids 
using the mean as aggregate‐function such that the grid cell‐size 
matched the bird survey data.

Vegetation structure was described using LiDAR‐derived data, 
processed with the lastools software (Isenburg, 2015). The Swiss‐
wide LiDAR dataset was acquired during multiple seasons between 
2000 and 2007 and consists of discrete first and last pulse returns 
with a nominal footprint of 0.3 m and a point density of 0.5 points/
m2 (Artuso, Bovet, & Streilein, 2003). From the terrain corrected and 
classified LiDAR point cloud (heights of classified vegetation LiDAR 
returns minus interpolated DTM heights), we calculated the average 
height, their standard deviation and coefficient of variation as well 
as the corresponding 10th, 25th and 95th percentiles per 100  m 
and 1 km pixel, respectively. In addition, we also derived the canopy 
cover (percentage of first returns above 1 m; COV) and canopy den‐
sity (ratio of all returns above 1 m divided by all returns; DNS). These 
variables were used to describe the vertical structure of vegetation. 
We further calculated both standard deviation and coefficient of 
variation in order to characterize vertical variation in LiDAR returns. 
In addition, we estimated the so‐called foliage height diversity (FHD), 
which is the Shannon diversity index based on 5 m vertical bins as 
H = pi ln(pi), where pi is the proportion of LiDAR returns in the 5 m bin 
i. These LiDAR variables were generated separately as raster data‐
sets for both the 100 × 100 m grid that matches the tree species NFI 
data, as well as the 1 × 1 km grid that matches the bird survey data.

We calculated additional LiDAR‐derived variables for the 
1 × 1 km grid as we considered these important predictors for bird 
distributions in Swiss forests. On the one hand, we calculated un‐
derstorey height diversity (UHD) analogously to FHD, but using 1 m 
bins restricted to below 12 m (Zellweger et al., 2016) as well as the 
ratio between the 95th and 25th percentile. On the other hand, we 
derived variables accounting for edge effects and fragmentation 
in order to describe the horizontal structural heterogeneity of the 
vegetation (Zellweger, Braunisch, Baltensweiler, & Bollmann, 2013). 
Based on the terrain corrected LiDAR point cloud we generated a 
gridded Canopy Height Model (CHM) with a grid size of 20 m. The 
CHM was classified into three classes, which are non‐forest (veg‐
etation height <1 m), understorey/midstorey (1–12 m) and canopy 
(>12 m). The length of edges between two height classes (e.g., non‐
forest/canopy) was calculated for each grid cell and summed up for 
the 1 × 1  km grid of the bird survey data. To measure the spatial 
dispersion or aggregation of the vegetation height classes understo‐
rey/midstorey and canopy, a clumpiness index was calculated for the 
1 × 1 km grid using the software fragstats (McGarigal, Cushman, & 
Ene, 2012).

Because the forest bird data were recorded between 1993 and 
1996 and the LiDAR data were recorded after 2000, there is a tempo‐
ral mismatch between species data and vegetation data. Generally, 
the forest laws in Switzerland are very strict and we can, thus, rule 
out any major changes in the vegetation structure between these 
two periods. The main exception is storm damage due to the cyclone 
“Lothar” in 1999. In storm‐damaged sites we can expect differences 
in vegetation structure between the recording periods of the bird 
survey data (before the cyclone) and the LiDAR data (after the cy‐
clone). Hence, we removed all storm‐damaged sites (n = 10) from the 
analyses to avoid mismatches in vegetation structure.

http://worldclim.org/bioclim
http://worldclim.org/bioclim
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After intersecting species and environmental data, we re‐
tained 2,535 1 × 1 km cells with breeding bird records and 6,946 
100 × 100 m cells with tree species occurrences. From these, we 
randomly selected 70% (1,774 cells for birds and 4,862 for tree spe‐
cies) for model building and 30% (761 cells for birds and 2,084 cells 
for tree species) for validation of the community predictions.

2.5 | Model building

We estimated three different kinds of models that served as input 
for the community predictions (Figure 1). SDMs and JSDMs were 
estimated to predict species‐specific occurrence probabilities per 
site. MEMs were estimated to predict species richness per site, 
which then served as macroecological constraint for the application 
of ecological assembly rules.

Prior to model building, all predictor variables were standardized. 
In each model, we only included the five most important and weakly 
correlated variables. To do so, we first assessed cross‐validated uni‐
variate variable importance for each predictor in a fivefold spatial 
block cross‐validation design. Therefore, for each dataset we split 
the study region into five rectangular tiles (Figure S2; r package sper-
rorest). The resulting sample sizes per tile ranged 222–568 for forest 
birds and 570–1,440 for tree species. We then estimated univariate 
GAMs on four of fivefolds (with logit link for species occurrences and 
log link for species richness; r package mgcv) and cross‐predicted to 
the left‐out fold with five repetitions. From the cross‐predictions, 
we calculated the percentage of explained deviance. Then, we re‐
duced the predictor set to variables with bivariate Spearman correla‐
tions |r| < 0.7, retaining those variables from highly correlated pairs 
with higher cross‐validated univariate importance (Dormann et al., 
2013). We thus obtained a predictor ranking for each single species. 
However, JSDMs require a global set of predictor variables and we 
thus selected those five variables with highest mean cross‐validated 
univariate importance among all species. SDMs and MEMs were run 
with the same set of global predictors as in JSDMs. In a sensitivity 
analysis we additionally estimated SDMs and MEMs using the five 
most important variables selected individually for each species and 
species richness, respectively. This did not change the overall results.

We fitted SDMs and JSDMs to single species occurrences and 
MEMs to species richness counts (Figure 1). Following current stan‐
dards (Araújo et al., 2019), SDMs and MEMs were fitted using an 
ensemble approach with four different algorithms: generalized lin‐
ear models (GLM), generalized additive models (GAM), boosted re‐
gression trees (BRT) and random forests (RF) with a binomial error 
distribution (with logit link) for SDMs (with r packages mgcv, dismo, 
randomForest) and a Poisson error distribution (with log link) for 
MEMs. Specifically, GLMs were fitted with linear and quadratic terms 
and GAMs were fitted with nonparametric cubic smoothing splines 
with up to four degrees of freedom. BRTs were estimated with a tree 
complexity of 2, a bag fraction of 0.75 and a variable learning rate 
such that 1,000–5,000 trees were fitted (Elith, Leathwick, & Hastie, 
2008). Random forests were fitted with 1,000 trees, and a minimum 
node size of 20. JSDMs were fitted with a latent variable model and 

a binomial error distribution (with probit link, with r package boral; 
Hui, 2016). In all JSDMs we included linear and quadratic terms and 
five latent variables. For forest bird species, JSDMs were run with 
50,000 iterations, a burnin of 20,000 and a thinning rate of 50. For 
tree species, JSDMs were run with 100,000 iterations, a burnin of 
50,000 and a thinning rate of 50. Convergence was assessed using 
the Geweke convergence diagnostic.

For all models (SDMs, MEMs, JSDMs), predictive model perfor‐
mance was assessed using a 5‐fold spatial block cross‐validation 
(with same spatial tiles as in univariate models, Figure S2) and four 
different performance measures were estimated: area under the 
receiver operating characteristic curve (AUC), true skill statistic 
(TSS), sensitivity and specificity. The latter three measures consti‐
tute threshold‐dependent performance measures and we calculated 
them using a TSS‐maximization threshold. We compared cross‐val‐
idated single‐species model performance for SDMs and JSDMs and 
tested whether JSDMs perform better for rare species. Spatial au‐
tocorrelation in model residuals was assessed using spline correlo‐
grams in the r package ncf (Bjornstad, 2016).

2.6 | Community predictions

In order to independently validate the community‐level predictions, 
all models were predicted to the 30% hold‐out data that were not 
used for model building. Consensus predictions from SDMs and 
MEMs were generated using un‐weighted ensemble means (in a sen‐
sitivity analysis, we also tested community‐level predictions when 
only GLMs were used to derive SDM predictions). JSDM predictions 
were derived through marginalizing over the latent variables in the 
model, which allows making prediction to new sites (Hui, 2016).

Both SDM and JSDM predictions were processed in four different 
ways to obtain species assemblage predictions: two stacking proce‐
dures (binary vs. probabilistic), two applications of SESAM (without 
and with bias correction; Calabrese et al., 2014) using the probabil‐
ity ranking as ecological assembly rule (D'Amen, Pradervand, et al., 
2015) and the species richness predictions from MEMs as site‐level 
constraint (Figure 1). First, binary stacks were derived by converting 
the species‐specific occurrence probabilities from (the consensus 
predictions of) SDMs and from JSDMs into presence–absence pre‐
dictions using a TSS‐maximization threshold (maximized separately 
for each species, and for SDMs and JSDMs, respectively) and then 
stacking the predicted presences. Second, for assessing the accu‐
racy of species assemblage predictions, probabilistic stacks were 
derived through randomly drawing from binomial trials with the site‐ 
and species‐level occurrence probabilities as success rates and then 
stacking the random presences. Random number generation was 
repeated 100 times, leading to a set of 100 probabilistic stacks. For 
assessing the accuracy of species richness predictions, we simply 
summed the site‐level occurrence probabilities of all species. Third, 
the probability ranking rule requires to rank the species in each site 
according to the occurrence probabilities predicted from SDMs and 
JSDMs and then  only the most probable species are retained in 
the community prediction with the maximum number of species per 
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site predicted from MEM. Fourth, we used the maximum‐likelihood 
approach proposed by Calabrese et al. (2014) to adjust the site‐level 
occurrence probabilities such that overprediction and underpredic‐
tion bias in species richness estimates is reduced and then repeated 
the probability ranking rule for these bias‐corrected occurrence 
probabilities. Specifically, we estimated the adjustment parameters 
on the training dataset during model building and then used these 
parameters together with predicted species richness from MEMs to 
correct the occurrence probabilities in the validation dataset. After 
that, the adjusted site‐level occurrence probabilities were summed 
up to obtain adjusted species richness estimates as macroecological 
constraint and the probability ranking was applied to the adjusted 
site‐level occurrence probabilities. The different model types (SDMs 
vs. JSDMs), stacking procedures (binary vs. probabilistic) and SESAM 
applications (probability ranking without and with bias correction of 
macroecological constraint) resulted in eight different sets of com‐
munity predictions (Figure 1).

All community predictions were evaluated in terms of accu‐
racy of site‐level assemblage prediction and species richness error. 
Accuracy of assemblage predictions was derived from site‐level con‐
fusion matrices that classify species into (a) true species presence 
(observed and predicted), (b) false species presence (not observed 
but predicted), (c) false species absence (observed but not predicted) 
and (d) true species absence (not observed and not predicted). From 
the confusion matrices, we then calculated assemblage sensitivity 
as a/(a + c), assemblage specificity as d/(b + d), assemblage TSS (true 
skill statistic) as assemblage sensitivity + assemblage specificity − 1 
and assemblage prediction success as a + d/N with N being the total 
number of species in the local species pool (Pottier et al., 2013). 
Site‐level species richness errors were calculated as the absolute 
differences between observed and predicted species richness per 
site divided by N.

We used mixed‐effect ANOVAs to test for significant differences 
in species assemblage and richness predictions between different 
model choices; specifically, differences between model types (SDMs 
vs. JSDMs), between stacking procedure (binary vs. probabilistic), 
between stacking and ecological assembly rule (stacking vs. prob‐
ability ranking), and between probability ranking without and with 
bias correction of the macroecological constraint. We corrected for 
repeated measures by using site as random effect.

All analyses were conducted using r version 3.3.2 (R Core Team, 
2016) with packages sperrorest (Brenning, 2012), mgcv (Wood, 2011), 
gbm (Ridgeway, 2013), dismo (Hijmans, Phillips, Leathwick, & Elith, 
2017), randomForest (Liaw & Wiener, 2002), boral (Hui, 2016), ncf 
(Bjornstad, 2016), PresenceAbsence (Freeman & Moisen, 2008), eco-
spat (Broennimann, Cola, & Guisan, 2016) and lme4 (Bates, Maechler, 
Bolker, & Walker, 2015).

3  | RESULTS

Climate variables showed highest cross‐validated univariate impor‐
tance for most species and, thus, the globally selected predictor 

sets contained mainly climate variables (Figure S3). In addition to 
the climate variables, for both forest birds and tree species, also 
one LiDAR variable describing the vertical vegetation structure was 
selected (Figure S3). Spatial block cross‐validation showed com‐
parable single species prediction accuracy between JSDMs and 
GLMs while the ensemble SDMs showed higher accuracy. Mean 
predictive performance was fair to excellent (Figure S4, Tables S1 
and S2). Spatial autocorrelation in model residuals was apparent at 
relatively short distances (forest birds mean ± SD: 5,971 m ± 6,267 m 
in SDMs, 10,050 m ± 10,008 m in JSDMs; tree species mean ± SD: 
8,853 m ± 10,676 m in SDMs, 13,150 m ± 13,123 m in JSDMs; Figure 
S5). These distances are short compared to the raw data (forest 
birds mean  ± SD: 42,687 m ±  28,451 m; tree species mean  ± SD: 
39,410 m ± 27,018 m; Figure S5). Overall, we judge the two datasets 
as suitable for the S‐SDM and JSDM comparison.

The comparison of single‐species performance in SDMs and 
JSDMs showed that ensemble SDMs generally outperformed JSDMs 
(JSDMs for birds, mean ± SD: AUC 0.77 ± 0.11, TSS 0.44 ± 0.18; en‐
semble SDMs for birds: AUC 0.88 ± 0.04, TSS 0.62 ± 0.11; JSDMs for 
trees: AUC 0.78 ± 0.09, TSS 0.39 ± 0.20; ensemble SDMs for trees: 
AUC 0.93 ± 0.04, TSS 0.75 ± 0.14). When comparing JSDMs against 
single‐species GLMs, which are comparable in the chosen complex‐
ity of the environmental responses, JSDMs performed better in 
terms of specificity (Tables S1 and S2, Figure S4). Also we found that 
JSDMs tended to outperform SDMs in terms of specificity mainly for 
rarer species (Figure S6).

Joint species distribution models indicated that environment 
is the main driving factor of bird and tree species distribution in 
Switzerland. Overall, environmental predictors (in particular climate, 
cf. Figure S2) accounted for 70% and 71% of covariation between 
bird species and tree species, respectively (calculated by comparing 
the JSDMs with pure latent variable models, cf. Hui, 2016). We clus‐
tered species according to the similarity in their environmental re‐
sponse (using hierarchical clustering with average linkage strategy), 
which revealed two and three distinct species groups for birds and 
trees, respectively, that correspond to lowland, montane and alpine 
species (Figures 2 and 3). Forest birds showed mainly positive resid‐
ual correlations in montane regions while negative residual correla‐
tions were only apparent in lowland species (Figure 2). By contrast, 
trees also exhibited negative residual correlation in alpine species 
(Figure 3). Additionally, we found strong negative residual correla‐
tions between alpine and lowland tree species while such patterns 
were less apparent for forest birds.

Deviation between observed species richness and species rich‐
ness predictions derived from stacking SDMs and JSDMs were 
largely consistent between birds and trees (Figure 4). Binary stacking 
led to overestimation of species richness, which was more severe in 
JSDMs than in SDMs. Probabilistic stacking as well as the probability 
ranking rule led to overprediction of low species richness and under‐
prediction of high species richness. Underprediction of high species 
richness sites was stronger for trees compared to birds. Bias correc‐
tion considerably reduced the overprediction and underprediction in 
species richness predictions of forest birds but not of trees.



     |  107ZURELL et al.

The accuracy of community assemblage predictions varied con‐
siderably between sites ranging from poor to outstanding (Figure 5). 
Average assemblage TSS values over all sites were 0.50 ± 0.17 for 
birds and 0.46 ± 0.22 for trees. True absences of species in a site 
(assemblage specificity) were much better predicted than true pres‐
ences of species (assemblage sensitivity; Figure S7). On average, 
birds showed slightly higher assemblage sensitivities than trees 
while the opposite was true for assemblage specificity. Assemblage 
prediction success was high with an average of 78 ± 8% correctly 
predicted bird species and 87 ± 10% correctly predicted tree species 
per site (Figure 5).

Mixed‐effect ANOVAs were used to test for significant differ‐
ences between different modelling choices. Generally, assemblage 
TSS and assemblage prediction success from stacked SDMs were 
significantly higher than from stacked JSDMs and deviation in site‐
level species richness was significantly lower (Figure 5). Probabilistic 
stacking always outperformed binary stacking in terms of assem‐
blage TSS, assemblage prediction success, assemblage sensitiv‐
ity and richness deviation. By contrast, it led to lower assemblage 
specificity (Figure S7). Applying probability ranking as ecological 
assembly rule yielded significantly better assemblage and richness 
predictions than either binary or probabilistic stacking (“EAR” in 
Figure 5). Correcting for species richness bias prior to probability 
ranking often improved species assemblage predictions and species 
richness predictions, although the absolute differences cannot be 
judged as ecologically relevant (“corr” in Figure 5).

4  | DISCUSSION

In this study, we tested the ability of stacked SDMs  and JSDMs 
to predict species assemblages. Our results indicate that although 
JSDMs show much promise for bridging species distribution mod‐
elling and community ecology, they do not necessarily outperform 
stacked SDMs in predicting site‐level species composition and spe‐
cies richness. Rather, the choice of stacking procedure and ecologi‐
cal assembly rules is more important. We thus conclude that JSDMs 
do not necessarily improve species assemblage and species richness 
predictions, but yield additional insights about community assembly, 
which should be further tested for other taxa, ecosystems and JSDM 
algorithms and possibly also for other questions.

Interestingly, at the species level ensemble SDMs clearly out‐
performed JSDMs while GLMs, whose response shapes are di‐
rectly comparable to the parametric JSDMs used here, showed 
rather similar performance to JSDMs. One important aspect why 
JSDMs did not improve (or faired worse in terms of) prediction ac‐
curacy could be the fact that JSDM predictions to new sites (here, 
hold‐out data) can only be done by marginalizing (i.e., averaging) 
over the latent variables. For interpolation, JSDMs could poten‐
tially achieve higher prediction accuracy compared to SDMs be‐
cause in such case JSDM predictions of one species can be made 
conditional on the presence of other species. For extrapolation, 
however, our results indicate that JSDMs do not improve species‐
level predictions.

F I G U R E  2   Joint species distribution model (JSDM) estimates of environmental correlation (left) and residual correlation among bird 
species (right). Species were ordered and groups identified by hierarchical clustering of their environmental correlation using an average 
linking strategy. For comparison, the same order was used for depicting residual correlation. The boxplots summarize the median elevation 
of each bird species' occurrence records for the different species groups
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It has been suggested that rare species should profit from joint 
modelling as they can “borrow strength” from estimates of the more 
common species (Ovaskainen & Soininen, 2011; Pollock et al., 2014). 
However, our results did not corroborate this proposition and we 
hardly observed that rare species benefitted from JSDMs. We only 
found a tendency that JSDMs improved the true absence rate (spe‐
cies‐level specificity) in rare species, especially so in tree species. 
At the same time, SDMs tended to improve the true presence rate 
(species‐level sensitivity) in rare species while results for AUC and 
TSS were equivocal. Sensitivity analysis showed that these results 
hold when JSDMs were compared against ensemble SDMs as well 
as GLMs. Our results do thus not support the idea that JSDMs may 
generally yield improved predictions for rare species. However, we 
did only include species with at least 50 presences because SDMs 
tend to be unreliable for smaller sample sizes (Breiner et al., 2015). 
In the future, it could be explicitly tested how accurately JSDMs are 
predicting rare species in comparison to other approaches such as 
the ensemble of small models (Breiner et al., 2015).

Our sensitivity analysis also indicated a strong effect of model 
complexity on predictive performance. JSDMs and GLMs only in‐
cluded linear and quadratic terms and thus were bound to yield 
smooth response surfaces. The ensemble SDMs, on the other hand, 
also included complex machine‐learning approaches like random for‐
ests and boosted regression trees that produce much more complex 
response surfaces (Elith et al., 2006). In our analyses, these ensembles 
typically yielded improved predictions at the species level. However, 

very complex models are not always desirable as this could limit the 
transferability when extrapolating beyond the sampled environmen‐
tal conditions (Merow et al., 2014; Wüest, Münkemüller, Lavergne, 
Pollock, & Thuiller, 2018; Yates et al., 2018). In the future, JSDMs 
of different complexities (Clark, Nemergut, Seyednasrollah, Turner, 
& Zhang, 2017; Harris, 2016; Hui, 2016; Ovaskainen et al., 2017) 
should be compared to investigate how response surface complexity 
affects the ability of JSDMs to predict community composition.

An advantage of JSDMs compared to SDMs is that they are 
able to disentangle environmental response from residual correla‐
tions among species that could be indicative of biotic interactions 
between these species or of missing and subscale environmental 
variability (Dormann et al., 2018; Pollock et al., 2014; Zurell et al., 
2018). Our models indicated that environment, in particular cli‐
mate, is the main driving factor of both bird and tree species dis‐
tributions in Switzerland. Based on the environmental correlations, 
we were able to separate species into lowland and montane to al‐
pine species. In forests birds, we found negative residual correla‐
tions mainly between lowland species. This could corroborate the 
stress gradient hypothesis that competition is most severe for low 
environmental stress (Meier, Edwards Jr, Kienast, Dobbertin, & 
Zimmermann, 2011). However, for tree species the pattern looked 
slightly different with strong negative residual correlations also 
among alpine species. Especially, Alnus incana, Alnus viridis and Salix 
caprea exhibited strong negative residual correlations with other 
alpine species. All three of these species are pioneers and thus 

F I G U R E  3   Joint species distribution model (JSDM) estimates of environmental correlation (left) and residual correlation among tree 
species (right). Species were ordered and groups identified by hierarchical clustering of their environmental correlation using an average 
linking strategy. For ease of comparison, the same order was used for depicting residual correlation. The boxplots summarize the median 
elevation of each tree species' occurrence records for the different species groups
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mainly occur where and when other tree species are not present, 
which could explain these negative correlations. The positive resid‐
ual correlations of montane to alpine species, especially in forest 
birds, could be indicative of facilitative interactions. This is in line 
with results of Gallien, Zurell, and Zimmermann (2018), who found 
stronger facilitative interactions in alpine than in lowland species, 
albeit for vascular plants. We cannot rule out that the positive re‐
sidual correlations at least partly indicate missing environmental 
variables or subscale environmental heterogeneity. Interspecific in‐
teractions refer to local processes between individuals while here 
we model species distributions at coarser spatial resolution (100 m 
for trees and 1 km for forest birds). Previous studies have shown 
that the signal of competitive interactions is more easily lost at in‐
creasingly coarser resolution than the signal of facilitative interac‐
tions (Araújo & Rozenfeld, 2014; Zurell et al., 2018). This could pose 
an additional explanation why we mainly found positive residual 
correlations, especially in the coarser‐grained bird models.

Similar to the species level analyses, JSDMs were not able to out‐
perform S‐SDMs in predicting community level properties such as 
site‐level species assemblage and species richness. Specifically, for 
all performance measures considered, JSDMs produced significantly 
less accurate community level predictions. However, the absolute 
differences were so small that they cannot be judged as ecologi‐
cally relevant. For both SDMs and JSDMs, choices have to be made 
on how species and site‐level occurrence probabilities are trans‐
lated into predictions of species assemblages and species richness. 

Generally, probabilistic stacking yielded more accurate species as‐
semblage and species richness predictions than binary stacking, 
and ecological assembly rules yielded more accurate predictions 
than probabilistic stacking. The correction of species richness bias 
suggested by Calabrese et al. (2014) only marginally improved pre‐
dictions based on ecological assembly rules. This surprisingly small 
effect of the bias correction is most likely due to the fact that pre‐
dictions were made to independent (hold‐out) data. In this case, the 
species richness bias could not be fully corrected because the site‐
level adjustment of the predictions had to be based on (inherently 
biased) species richness predictions (from MEMs).

None of the tested approaches for making species assemblage 
predictions was capable of completely removing the over‐ and un‐
derprediction biases in species richness predictions. Notably, the 
underprediction of high species richness for probabilistic stacks and 
probability ranking was much more severe in the tree than in the 
bird species. These differences are probably related to lower overall 
prevalence in the tree species (Figure S1), which has been shown 
to increase underprediction of species richness (Zurell et al., 2016).

Overall, we conclude that for community‐level predictions 
the choice of how species and site‐level occurrence probabilities 
are combined into species assemblage predictions is of higher 
importance than the choice of the model type used, SDMs or 
JSDMs. Highest site‐level prediction accuracy can be achieved 
when constructing species assemblages from SDM derived occur‐
rence probabilities using the probability ranking rule and direct 

F I G U R E  4  Observed versus predicted species richness for different underlying model types (species distribution models [SDMs] vs. joint 
species distribution models [JSDMs]), different stacking procedures (binary vs. probabilistic), and for the application of ecological assembly 
rules (PRR, probability ranking rule) without and with bias correction of the macroecological constraints. Coloured lines indicate the major 
axis regression of observed versus predicted species richness. Grey lines represent the 1:1 line
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species richness predictions from MEMs as macroecological con‐
straint. Using JSDMs instead of SDMs or correcting for biases in 
the species richness predictions will only have minor effects on 
the community‐level predictions. Future studies should evaluate 
these propositions across more taxa and biogeographical realms 
as well as for other JSDM algorithms (e.g., Harris, 2015; Clark 
et al., 2017; Ovaskainen et al., 2017). The promise of JSDMs to 
improve community predictions by incorporating co‐occurrence 
patterns into species distribution models did not hold in our case 
studies. In fact, JSDMs did not even improve single‐species pre‐
dictions consistently. Specific aspects of JSDMs, such as condi‐
tioning predictions on the presence/absence of other species 
need more attention and may further our ability to successfully 
predict the composition of species assemblages. Clearly, JSDMs 

can help deriving hypotheses about community assembly pro‐
cesses present in the system and could, thus, serve as screening 
tool for identifying important biotic interactions in local species 
pools (Ovaskainen et al., 2017; Zurell, 2017). These relative bene‐
fits of SDMs and JSDMs in community predictions and hypothesis 
testing should be further evaluated in the future.
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