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Abstract
Aim: Predicting	 the	 spatial	 distribution	 of	 species	 assemblages	 remains	 an	 impor‐
tant	challenge	in	biogeography.	Recently,	it	has	been	proposed	to	extend	correlative	
species	distribution	models	 (SDMs)	by	 taking	 into	account	 (a)	 covariance	between	
species	 occurrences	 in	 so‐called	 joint	 species	 distribution	models	 (JSDMs)	 and	 (b)	
ecological	 assembly	 rules	within	 the	 SESAM	 (spatially	 explicit	 species	 assemblage	
modelling)	framework.	Yet,	little	guidance	exists	on	how	these	approaches	could	be	
combined.	We,	thus,	aim	to	compare	the	accuracy	of	assemblage	predictions	derived	
from	stacked	and	from	joint	SDMs.
Location: Switzerland.
Taxon: Birds,	tree	species.
Methods: Based	on	 two	monitoring	 schemes	 (national	 forest	 inventory	 and	 Swiss	
breeding	bird	atlas),	we	built	SDMs	and	JSDMs	for	tree	species	(at	100	m	resolution)	
and	forest	birds	(at	1	km	resolution).	We	tested	accuracy	of	species	assemblage	and	
richness	predictions	on	holdout	data	using	different	stacking	procedures	and	eco‐
logical	assembly	rules.
Results: Despite	minor	differences,	results	were	consistent	between	birds	and	tree	
species.	 Cross‐validated	 species‐level	model	 performance	was	 generally	 higher	 in	
SDMs	than	JSDMs.	Differences	in	species	richness	and	assemblage	predictions	were	
larger	 between	 stacking	 procedures	 and	 ecological	 assembly	 rules	 than	 between	
stacked	SDMs	and	JSDMs.	On	average,	predictions	were	slightly	better	for	stacked	
SDMs	 compared	 to	 JSDMs,	 probabilistic	 stacks	 outperformed	 binary	 stacks,	 and	
ecological	assembly	rules	yielded	best	predictions.
Main conclusions: When	 predicting	 the	 composition	 of	 species	 assemblages,	 the	
choice	of	stacking	procedure	and	ecological	assembly	rule	seems	more	decisive	than	
differences	 in	underlying	model	type	 (SDM	vs.	JSDM).	JSDMs	do	not	seem	to	 im‐
prove	 community	 predictions	 compared	 to	 SDMs	 or	 improve	 predictions	 for	 rare	
species.	Still,	JSDMs	may	provide	additional	 insights	into	community	assembly	and	
may	help	deriving	hypotheses	about	prevailing	biotic	interactions	in	the	system.	We	
provide	simple	rules	of	thumb	for	choosing	appropriate	modelling	pathways.	Future	
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1  | INTRODUC TION

Quantifying	 the	 reasons	why	 species	 inhabit	 some	 places	 but	 not	
others	 remains	 a	 central	 question	 in	 biogeography.	 In	 recent	 de‐
cades,	 we	 have	 seen	 increasing	 interest	 in	 species	 distributions	
modelling	and	quantitative	predictions	of	where	species	and	commu‐
nities	can	be	found	(D'Amen,	Rahbek,	Zimmermann,	&	Guisan,	2017;	
Zimmermann,	Edwards,	Graham,	Pearman,	&	Svenning,	2010).	Such	
predictions	have	aided,	for	example,	reserve	selection	(Kremen	et	al.,	
2008),	 impact	assessments	 (Thuiller	et	al.,	2014)	and	 invasive	 spe‐
cies	management	(Dullinger	et	al.,	2017).	This	development	has	been	
spurred	by	an	increasing	availability	of	environmental	and	biodiver‐
sity	 data,	 for	 example	 through	 remote	 sensing,	 open‐access	 data‐
bases	and	citizen	science.	Also,	modelling	techniques	have	advanced	
and	new	modelling	platforms	are	 introduced	continually.	However,	
the	wealth	of	possibilities	may	also	complicate	modelling	choice	and	
different	model	techniques	and	frameworks	should	be	benchmarked	
and	tested	(continually)	to	guide	practitioners	and	policy	makers.

In	 this	 study,	 we	 are	 particularly	 interested	 in	 spatial	 predic‐
tions	 of	 community	 attributes,	 primarily	 in	 the	 composition	 but	
also	 in	 the	 richness	 of	 local	 communities.	 Such	 predictions	 could	

be	of	special	 interest	 for	species	conservation	and	reserve	design.	
Different	spatiotemporal	processes	influence	community	assembly	
(HilleRisLambers,	Adler,	Harpole,	Levine,	&	Mayfield,	2012).	The	re‐
gional	species	pool	is	constrained	by	(evolutionary	and	biogeograph‐
ical)	history,	the	local	species	pool	by	dispersal	and	other	stochastic	
events.	Only	a	subset	of	the	local	species	pool	will	then	be	present	
in	the	realized	assemblage	(Sattler,	Obrist,	Duelli,	&	Moretti,	2011).	
Often,	 this	 is	metaphorically	described	as	species	passing	 through	
an	 abiotic	 niche	 and	 a	 biotic	 niche	 filter	 (Figure	 1;	 Götzenberger	
et	 al.,	 2012).	How	we	could	predict	 local	 community	 richness	and	
composition	still	remains	a	challenge	even	though	different	model‐
ling	 frameworks	have	been	proposed	 (D'Amen	et	al.,	2017;	Ferrier	
&	 Guisan,	 2006).	 Correlative	 species	 distribution	 models	 (SDMs)	
constitute	the	most	widely	used	tool	to	predict	single	species	distri‐
butions	under	current	and	future	environments	(Elith	&	Leathwick,	
2009;	Guisan	&	Thuiller,	2005;	Guisan	&	Zimmermann,	2000).	The	
apparent	and	logical	next	step	is	then	to	overlay	these	single	species	
predictions	to	obtain	community	assemblage	predictions	in	so‐called	
stacked	 species	 distribution	 models	 (S‐SDMs)	 (Guisan	 &	 Rahbek,	
2011).	However,	SDMs	ignore	(or	only	implicitly	consider)	biotic	in‐
teractions	(Kissling	et	al.,	2012;	Wisz	et	al.,	2013)	and,	thus,	cannot	

studies	should	test	these	preliminary	guidelines	for	other	taxa	and	biogeographical	
realms	as	well	as	for	other	JSDM	algorithms.

K E Y W O R D S

AUC,	community	assembly,	community	composition,	ecological	niche,	habitat	suitability	
models,	prediction,	sensitivity,	species	richness,	specificity,	TSS

F I G U R E  1  Schematic	representation	of	the	conceptual	framework	and	our	modelling	workflow	for	comparing	assemblage	prediction	
success.	Left	panel:	The	spatially	explicit	species	assemblage	modelling	(SESAM)	framework	applies	successive	modelling	steps	to	imitate	the	
filtering	cascade	of	community	assembly	(steps	1,	2a,	3–4;	adapted	from	Guisan	&	Rahbek,	2011).	Joint	species	distribution	models	(JSDMs;	
step	2b)	should	yield	information	on	both	abiotic	and	biotic	constraints.	Right	panel:	The	modelling	workflow	exemplifies	how	species	
distribution	models	(SDMs)	and	JSDMs	could	be	stacked	to	directly	yield	assemblage	predictions	and	how	macroecological	constraints	(with	
or	without	bias	correction)	are	used	to	inform	the	ecological	assembly	rules	(here,	probability	ranking	rule)
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account	 for	 the	 biotic	 niche	 filter	 in	 community	 assembly	 (Guisan	
&	Rahbek,	 2011).	More	 recently,	 joint	 species	 distribution	models	
(JSDMs)	 have	 been	 developed	 that	 incorporate	 species	 co‐occur‐
rence	data	into	SDMs	and	can	thus	provide	a	bridge	between	spe‐
cies	 distribution	modelling	 and	 community	 ecology	 (Pollock	 et	 al.,	
2014;	Warton	et	al.,	2015).	Hitherto,	not	many	studies	have	explic‐
itly	compared	SDM	and	JSDM	model	performance,	and	the	ability	
of	S‐SDMs	and	JSDMs	to	predict	species	assemblages	(Harris,	2015).

Joint	 species	 distribution	 models	 simultaneously	 estimate	 the	
species‐environment	relationship	of	multiple	species	and	the	resid‐
ual	correlation	between	those	species	that	could	be	indicative	of	bi‐
otic	 interactions	 (Zurell,	Pollock,	&	Thuiller,	2018),	but	also	missing	
environmental	 information	 and	 other	 ecological	 processes.	 Similar	
to	SDMs,	JSDMs	generate	site‐level	occurrence	probabilities	of	the	
different	species,	which	have	to	be	combined	(“stacked“)	in	order	to	
yield	predictions	of	 local	community	composition.	Previous	studies	
on	S‐SDMs	have	shown	that	the	choice	of	stacking	procedure	is	non‐
trivial.	Binary	stacks,	 for	which	a	 threshold	 is	applied	 to	 transform	
continuous	species	occurrence	probabilities	to	binary	maps	prior	to	
stacking,	often	lead	to	overprediction	of	species	richness	(D'Amen,	
Dubuis,	et	al.,	2015;	Dubuis	et	al.,	2011),	but	not	always	 (D'Amen,	
Pradervand,	&	Guisan,	2015;	Zurell,	Zimmermann,	Sattler,	Nobis,	&	
Schröder,	2016).	This	overprediction	of	species	richness	has	been	at‐
tributed	to	biotic	interactions	that	limit	realized	assemblages	(Guisan	
&	Rahbek,	2011)	while	other	authors	argue	 that	 thresholding	 site‐
level	occurrence	probabilities	generally	leads	to	statistical	bias,	which	
in	turn	causes	overprediction	(Calabrese,	Certain,	Kraan,	&	Dormann,	
2014).	Rather,	 it	has	been	suggested	that	probabilistic	stacking,	for	
which	species	presences	are	obtained	from	repeated	Bernoulli	trials	
(Calabrese	et	al.,	2014;	Dubuis	et	al.,	2011;	Pottier	et	al.,	2013)	should	
be	preferred	over	binary	stacking	(Calabrese	et	al.,	2014).	However,	
probabilistic	stacking	(as	well	as	macroecological	models,	MEMs,	that	
directly	relate	species	richness	to	environmental	predictors,	Guisan	
&	Rahbek,	2011)	often	lead	to	overprediction	of	low	species	richness	
and	underprediction	of	high	species	richness,	which	can	partially	be	
explained	 by	 (sub‐scale)	 environmental	 heterogeneity	 and	 species'	
prevalence	 (Zurell	 et	 al.,	 2016).	 Simply	 summing	 the	 predicted	 oc‐
currence	probabilities,	which	has	been	proposed	as	the	statistically	
most	 correct	way	of	 stacking	 (Calabrese	 et	 al.,	 2014)	 impedes	 the	
analysis	 of	 turnover	 analyses	 in	 space	or	 time,	 as	 the	output	does	
not	explicitly	reveal	species	identities.	While	the	accuracy	of	species	
richness	predictions	has	been	assessed	(Dubuis	et	al.,	2011),	no	study	
has	compared	the	accuracy	of	assemblage	predictions	between	bi‐
nary	and	probabilistic	(Bernoulli	trial)	stacking	methods,	even	though	
data	on	community	composition	are	crucial	for	adequately	assessing	
potential	species	turnover	 in	response	to	global	change	 impacts	or	
for	prioritizing	conservation	actions	(Pollock,	Thuiller,	&	Jetz,	2017).

Guisan	and	Rahbek	 (2011)	proposed	 the	SESAM	 (“spatially	ex‐
plicit	 species	 assemblage	modelling”)	 framework	 to	 overcome	 the	
richness	overprediction	of	binary	S‐SDMs	and	to	account	for	biotic	
filtering.	SESAM	applies	successive	filters	to	select	how	many	and	
which	 species	 from	 the	 local	 species	pool	 could	be	present	 in	 the	
realized	 assemblages	 (Figure	 1).	 Specifically,	 Guisan	 and	 Rahbek	

(2011)	propose	to	use	SDMs	as	abiotic	niche	filter,	and	macroecolog‐
ical	constraints	and	ecological	assembly	rules	as	biotic	niche	filter.	
Recent	applications	 indicate	that	 the	SESAM	framework	could	 im‐
prove	assemblage	predictions	compared	to	binary	S‐SDMs	(D'Amen,	
Dubuis,	et	al.,	2015;	D'Amen,	Pradervand,	et	al.,	2015).	Nevertheless,	
Calabrese	et	al.	(2014)	caution	that	SESAM	could	be	of	limited	value	
if	 the	 species	 richness	 predictions	 (used	 as	 macroecological	 con‐
straint,	Figure	1)	are	strongly	biased	for	low	and	high	species	rich‐
ness	sites.	To	overcome	this	bias,	Calabrese	et	al.	 (2014)	proposed	
a	 maximum‐likelihood	 approach	 to	 adjust	 site‐level	 occurrence	
probabilities	 based	on	observed	or	 estimated	 species	 richness.	 To	
our	knowledge,	it	has	not	been	tested	whether	this	bias	correction	
improves	the	accuracy	of	assemblage	predictions.	Also,	it	is	unclear	
where	JSDMs	can	be	placed	in	the	SESAM	framework	and	whether	
assemblage	 predictions	 from	 JSDMs	 will	 also,	 similar	 to	 S‐SDMs,	
yield	improved	accuracies	when	applying	additional	biotic	filters.

Thus,	we	propose	to	compare	S‐SDMs	and	JSDMs	in	their	ability	
to	 predict	 species	 assemblages.	 Specifically,	we	 test	 the	 effect	 of	
different	stacking	procedures	(binary	vs.	probabilistic),	the	effect	of	
applying	macroecological	constraints	and	ecological	assembly	rules	
(as	proposed	in	the	SESAM	framework),	and	the	effect	of	bias	cor‐
rection	in	macroecological	constraints	(as	proposed	by	Calabrese	et	
al.,	2014;	Figure	1).	As	case	studies,	we	use	data	from	Swiss	breeding	
bird	atlas	(Schmid,	Luder,	Naef‐Daenzer,	Graf,	&	Zbinden,	1998)	and	
from	Swiss	forest	inventory	(Brassel	&	Lischke,	2001)	that	constitute	
monitoring	schemes	of	high	quality	and	high	detection	probabilities.

2  | MATERIAL S AND METHODS

2.1 | Species and environmental data

Two	 different	 taxonomic	 groups	 were	 selected	 as	 study	 systems	
to	test	the	different	modelling	choices:	(a)	forest	birds	and	(b)	bush	
and	 tree	 species	 of	 Switzerland.	 We	 assume	 that	 all	 species	 in	
Switzerland	can	be	summarized	in	the	same	local	species	pool	and	
are	not	further	constrained	by	historical	differences	or	dispersal	lim‐
itations	(Figure	1).	We	selected	climate,	topography	and	vegetation	
structure	as	environmental	predictor	variables.

2.2 | Breeding birds

Bird	presence–absence	data	were	obtained	from	the	Swiss	breeding	
bird	atlas	at	a	1	×	1	km	resolution	(Schmid	et	al.,	1998).	These	data	
were	 recorded	 over	 a	 4‐year	 period	 (1993–1996)	 in	 usually	 three	
visits	per	year	(two	above	the	tree	line)	using	a	simplified	territory	
mapping	approach.	Previous	analyses	have	shown	that	this	approach	
ensures	 high	 species	 detectability	 of	 approximately	 90%	 (Kéry	 &	
Schmid,	2006).	We	concentrate	on	forest	birds	to	minimize	problems	
associated	with	missing	environmental	covariates,	the	magnitude	of	
which	could	differ	among	species	of	different	broad	habitat	 types	
(Zurell	 et	 al.,	 2016).	 To	 avoid	 overfitting	 for	 rare	 species	 (Breiner,	
Guisan,	Bergamini,	&	Nobis,	2015),	we	only	considered	species	with	
at	 least	50	presences	 resulting	 in	a	 total	number	of	56	 forest	bird	
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species	in	the	study	region	(Table	S1).	Overall,	many	forest	bird	spe‐
cies	were	rather	common	(Figure	S1).

2.3 | Forest inventory

Tree	species	presence–absence	data	were	obtained	from	the	Swiss	
National	Forest	Inventory	(NFI).	The	NFI	samples	Switzerland	on	a	
regular	grid	(spacing	1.4	km),	and	in	case	the	sample	falls	into	forest	it	
records	forest	characteristics	in	a	maximal	area	of	50	×	50	m	(Brassel	
&	Lischke,	2001).	We	aggregated	the	NFI	presence–absence	data	to	
100	×	100	m	plot	size	to	match	the	minimum	grain	of	available	envi‐
ronmental	data	(details	see	below).	Analogously	to	the	breeding	bird	
data,	we	only	considered	species	with	at	least	50	presences	resulting	
in	a	total	number	of	63	tree	and	shrub	species	 in	the	study	region	
(hereafter	referred	to	as	tree	species;	Table	S2).	Overall,	many	tree	
species	were	rare	with	the	majority	of	species	showing	a	prevalence	
below	10%	(Figure	S1).

2.4 | Environmental data

We	 prepared	 the	 environmental	 predictor	 variables	 climate,	 to‐
pography	and	vegetation	structure	at	 the	same	resolution	as	 the	
species	data,	meaning	at	1	×	1	km	for	analyses	of	forest	birds	and	
at	100	×	100	m	for	analyses	of	tree	species.	Topography	was	rep‐
resented	 using	 Slope,	 Aspect,	 the	 Topographical	 Position	 Index	
(TPI)	 and	Topographical	Wetness	 Index	 (TWI)	 (Wilson	&	Gallant,	
2000)	based	on	a	100	m	digital	elevation	model.	TPI	in	a	cell	cor‐
responds	to	the	difference	of	the	focal	cell	to	the	mean	of	its	eight	
surrounding	cells,	 thus	 indicating	whether	the	cell	 is	 in	a	depres‐
sion	(negative	values)	or	in	a	rise	(positive	values).	We	further	cal‐
culated	potential	monthly	solar	 radiation	as	outlined	 in	Hofierka,	
Suri,	and	Šúri	(2002).	Monthly	average	climate	data	for	the	period	
1981–1990	were	generated	by	interpolating	station	data	from	the	
Federal	Office	of	Meteorology	and	Climatology	MeteoSwiss	to	a	
resolution	of	100	×	100	m	using	 the	daymet	 software	 (Thornton,	
Running,	 &	White,	 1997).	 From	 these	monthly	 averages,	we	 de‐
rived	a	set	of	19	bioclimatic	predictors	 (http://world	clim.org/bio‐
clim)	as	well	as	so‐called	degree	days.	Degree	days	constitute	the	
sum	of	all	monthly	temperature	values	greater	than	a	given	thresh‐
old	 temperature	 multiplied	 by	 the	 total	 number	 of	 days	 (where	
thresholds	0	and	5°C	were	applied	 for	DDEG0	and	DDEG5).	We	
further	calculated	potential	evapotranspiration	(PET)	using	radia‐
tion	 as	 proposed	 by	Makkink	 (1957),	 as	 this	method	was	 shown	
to	 best	 approximate	 PET	 in	 Switzerland	 (Xu	&	 Singh,	 2002).	 For	
both	 precipitation	 and	 PET	 we	 also	 calculated	 summer	 (April–
September)	and	winter	(October–March)	averages	as	well	as	their	
ratio.	We	further	used	PET	and	precipitation	data	to	calculate	the	
moisture	 balance	 (MBAL)	 as	 the	 difference	 between	 precipita‐
tion	and	PET,	and	the	moisture	index	(MIND)	as	the	ratio	between	
PET	and	precipitation.	For	the	analyses	of	forest	bird	species,	the	
topographical	and	climatic	data	were	aggregated	to	1	×	1	km	grids	
using	the	mean	as	aggregate‐function	such	that	 the	grid	cell‐size	
matched	the	bird	survey	data.

Vegetation	 structure	was	 described	 using	 LiDAR‐derived	 data,	
processed	with	 the	 lastools	 software	 (Isenburg,	2015).	The	Swiss‐
wide	LiDAR	dataset	was	acquired	during	multiple	seasons	between	
2000	and	2007	and	consists	of	discrete	first	and	last	pulse	returns	
with	a	nominal	footprint	of	0.3	m	and	a	point	density	of	0.5	points/
m2	(Artuso,	Bovet,	&	Streilein,	2003).	From	the	terrain	corrected	and	
classified	LiDAR	point	cloud	(heights	of	classified	vegetation	LiDAR	
returns	minus	interpolated	DTM	heights),	we	calculated	the	average	
height,	their	standard	deviation	and	coefficient	of	variation	as	well	
as	 the	 corresponding	 10th,	 25th	 and	 95th	 percentiles	 per	 100	 m	
and	1	km	pixel,	respectively.	In	addition,	we	also	derived	the	canopy	
cover	(percentage	of	first	returns	above	1	m;	COV)	and	canopy	den‐
sity	(ratio	of	all	returns	above	1	m	divided	by	all	returns;	DNS).	These	
variables	were	used	to	describe	the	vertical	structure	of	vegetation.	
We	 further	 calculated	 both	 standard	 deviation	 and	 coefficient	 of	
variation	in	order	to	characterize	vertical	variation	in	LiDAR	returns.	
In	addition,	we	estimated	the	so‐called	foliage	height	diversity	(FHD),	
which	is	the	Shannon	diversity	 index	based	on	5	m	vertical	bins	as	
H = pi	ln(pi),	where	pi	is	the	proportion	of	LiDAR	returns	in	the	5	m	bin	
i.	These	LiDAR	variables	were	generated	separately	as	raster	data‐
sets	for	both	the	100	×	100	m	grid	that	matches	the	tree	species	NFI	
data,	as	well	as	the	1	×	1	km	grid	that	matches	the	bird	survey	data.

We	 calculated	 additional	 LiDAR‐derived	 variables	 for	 the	
1	×	1	km	grid	as	we	considered	these	important	predictors	for	bird	
distributions	 in	Swiss	 forests.	On	the	one	hand,	we	calculated	un‐
derstorey	height	diversity	(UHD)	analogously	to	FHD,	but	using	1	m	
bins	restricted	to	below	12	m	(Zellweger	et	al.,	2016)	as	well	as	the	
ratio	between	the	95th	and	25th	percentile.	On	the	other	hand,	we	
derived	 variables	 accounting	 for	 edge	 effects	 and	 fragmentation	
in	order	 to	describe	the	horizontal	structural	heterogeneity	of	 the	
vegetation	(Zellweger,	Braunisch,	Baltensweiler,	&	Bollmann,	2013).	
Based	on	the	 terrain	corrected	LiDAR	point	cloud	we	generated	a	
gridded	Canopy	Height	Model	(CHM)	with	a	grid	size	of	20	m.	The	
CHM	was	 classified	 into	 three	 classes,	which	 are	 non‐forest	 (veg‐
etation	height	 <1	m),	 understorey/midstorey	 (1–12	m)	 and	 canopy	
(>12	m).	The	length	of	edges	between	two	height	classes	(e.g.,	non‐
forest/canopy)	was	calculated	for	each	grid	cell	and	summed	up	for	
the	1	×	1	 km	grid	of	 the	bird	 survey	data.	To	measure	 the	 spatial	
dispersion	or	aggregation	of	the	vegetation	height	classes	understo‐
rey/midstorey	and	canopy,	a	clumpiness	index	was	calculated	for	the	
1	×	1	km	grid	using	the	software	fragstats	(McGarigal,	Cushman,	&	
Ene,	2012).

Because	the	forest	bird	data	were	recorded	between	1993	and	
1996	and	the	LiDAR	data	were	recorded	after	2000,	there	is	a	tempo‐
ral	mismatch	between	species	data	and	vegetation	data.	Generally,	
the	forest	laws	in	Switzerland	are	very	strict	and	we	can,	thus,	rule	
out	 any	major	 changes	 in	 the	vegetation	 structure	between	 these	
two	periods.	The	main	exception	is	storm	damage	due	to	the	cyclone	
“Lothar”	in	1999.	In	storm‐damaged	sites	we	can	expect	differences	
in	vegetation	 structure	between	 the	 recording	periods	of	 the	bird	
survey	data	(before	the	cyclone)	and	the	LiDAR	data	(after	the	cy‐
clone).	Hence,	we	removed	all	storm‐damaged	sites	(n	=	10)	from	the	
analyses	to	avoid	mismatches	in	vegetation	structure.

http://worldclim.org/bioclim
http://worldclim.org/bioclim
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After	 intersecting	 species	 and	 environmental	 data,	 we	 re‐
tained	2,535	1	×	1	km	cells	with	breeding	bird	 records	and	6,946	
100	×	100	m	cells	with	 tree	 species	occurrences.	 From	 these,	we	
randomly	selected	70%	(1,774	cells	for	birds	and	4,862	for	tree	spe‐
cies)	for	model	building	and	30%	(761	cells	for	birds	and	2,084	cells	
for	tree	species)	for	validation	of	the	community	predictions.

2.5 | Model building

We	estimated	three	different	kinds	of	models	that	served	as	input	
for	 the	 community	 predictions	 (Figure	1).	 SDMs	 and	 JSDMs	were	
estimated	 to	 predict	 species‐specific	 occurrence	 probabilities	 per	
site.	 MEMs	 were	 estimated	 to	 predict	 species	 richness	 per	 site,	
which	then	served	as	macroecological	constraint	for	the	application	
of	ecological	assembly	rules.

Prior	to	model	building,	all	predictor	variables	were	standardized.	
In	each	model,	we	only	included	the	five	most	important	and	weakly	
correlated	variables.	To	do	so,	we	first	assessed	cross‐validated	uni‐
variate	variable	 importance	 for	each	predictor	 in	a	 fivefold	 spatial	
block	 cross‐validation	design.	Therefore,	 for	 each	dataset	we	 split	
the	study	region	into	five	rectangular	tiles	(Figure	S2;	r	package	sper-
rorest).	The	resulting	sample	sizes	per	tile	ranged	222–568	for	forest	
birds	and	570–1,440	for	tree	species.	We	then	estimated	univariate	
GAMs	on	four	of	fivefolds	(with	logit	link	for	species	occurrences	and	
log	link	for	species	richness;	r	package	mgcv)	and	cross‐predicted	to	
the	 left‐out	 fold	with	 five	 repetitions.	 From	 the	 cross‐predictions,	
we	calculated	 the	percentage	of	explained	deviance.	Then,	we	 re‐
duced	the	predictor	set	to	variables	with	bivariate	Spearman	correla‐
tions	|r|	<	0.7,	retaining	those	variables	from	highly	correlated	pairs	
with	higher	cross‐validated	univariate	 importance	 (Dormann	et	al.,	
2013).	We	thus	obtained	a	predictor	ranking	for	each	single	species.	
However,	JSDMs	require	a	global	set	of	predictor	variables	and	we	
thus	selected	those	five	variables	with	highest	mean	cross‐validated	
univariate	importance	among	all	species.	SDMs	and	MEMs	were	run	
with	the	same	set	of	global	predictors	as	in	JSDMs.	In	a	sensitivity	
analysis	we	additionally	estimated	SDMs	and	MEMs	using	the	five	
most	important	variables	selected	individually	for	each	species	and	
species	richness,	respectively.	This	did	not	change	the	overall	results.

We	fitted	SDMs	and	JSDMs	to	single	species	occurrences	and	
MEMs	to	species	richness	counts	(Figure	1).	Following	current	stan‐
dards	 (Araújo	 et	 al.,	 2019),	 SDMs	and	MEMs	were	 fitted	using	 an	
ensemble	approach	with	four	different	algorithms:	generalized	 lin‐
ear	models	(GLM),	generalized	additive	models	(GAM),	boosted	re‐
gression	trees	(BRT)	and	random	forests	(RF)	with	a	binomial	error	
distribution	(with	logit	link)	for	SDMs	(with	r	packages	mgcv,	dismo,	
randomForest)	 and	 a	 Poisson	 error	 distribution	 (with	 log	 link)	 for	
MEMs.	Specifically,	GLMs	were	fitted	with	linear	and	quadratic	terms	
and	GAMs	were	fitted	with	nonparametric	cubic	smoothing	splines	
with	up	to	four	degrees	of	freedom.	BRTs	were	estimated	with	a	tree	
complexity	of	2,	a	bag	fraction	of	0.75	and	a	variable	learning	rate	
such	that	1,000–5,000	trees	were	fitted	(Elith,	Leathwick,	&	Hastie,	
2008).	Random	forests	were	fitted	with	1,000	trees,	and	a	minimum	
node	size	of	20.	JSDMs	were	fitted	with	a	latent	variable	model	and	

a	binomial	error	distribution	(with	probit	link,	with	r	package	boral; 
Hui,	2016).	In	all	JSDMs	we	included	linear	and	quadratic	terms	and	
five	 latent	variables.	For	forest	bird	species,	JSDMs	were	run	with	
50,000	iterations,	a	burnin	of	20,000	and	a	thinning	rate	of	50.	For	
tree	species,	JSDMs	were	run	with	100,000	iterations,	a	burnin	of	
50,000	and	a	thinning	rate	of	50.	Convergence	was	assessed	using	
the	Geweke	convergence	diagnostic.

For	all	models	(SDMs,	MEMs,	JSDMs),	predictive	model	perfor‐
mance	 was	 assessed	 using	 a	 5‐fold	 spatial	 block	 cross‐validation	
(with	same	spatial	tiles	as	in	univariate	models,	Figure	S2)	and	four	
different	 performance	 measures	 were	 estimated:	 area	 under	 the	
receiver	 operating	 characteristic	 curve	 (AUC),	 true	 skill	 statistic	
(TSS),	 sensitivity	and	specificity.	The	 latter	 three	measures	consti‐
tute	threshold‐dependent	performance	measures	and	we	calculated	
them	using	a	TSS‐maximization	threshold.	We	compared	cross‐val‐
idated	single‐species	model	performance	for	SDMs	and	JSDMs	and	
tested	whether	JSDMs	perform	better	for	rare	species.	Spatial	au‐
tocorrelation	in	model	residuals	was	assessed	using	spline	correlo‐
grams	in	the	r	package	ncf	(Bjornstad,	2016).

2.6 | Community predictions

In	order	to	independently	validate	the	community‐level	predictions,	
all	models	were	predicted	to	the	30%	hold‐out	data	that	were	not	
used	 for	 model	 building.	 Consensus	 predictions	 from	 SDMs	 and	
MEMs	were	generated	using	un‐weighted	ensemble	means	(in	a	sen‐
sitivity	analysis,	we	also	 tested	community‐level	predictions	when	
only	GLMs	were	used	to	derive	SDM	predictions).	JSDM	predictions	
were	derived	through	marginalizing	over	the	latent	variables	in	the	
model,	which	allows	making	prediction	to	new	sites	(Hui,	2016).

Both	SDM	and	JSDM	predictions	were	processed	in	four	different	
ways	to	obtain	species	assemblage	predictions:	two	stacking	proce‐
dures	(binary	vs.	probabilistic),	two	applications	of	SESAM	(without	
and	with	bias	correction;	Calabrese	et	al.,	2014)	using	the	probabil‐
ity	ranking	as	ecological	assembly	rule	(D'Amen,	Pradervand,	et	al.,	
2015)	and	the	species	richness	predictions	from	MEMs	as	site‐level	
constraint	(Figure	1).	First,	binary	stacks	were	derived	by	converting	
the	 species‐specific	 occurrence	 probabilities	 from	 (the	 consensus	
predictions	of)	SDMs	and	from	JSDMs	into	presence–absence	pre‐
dictions	using	a	TSS‐maximization	threshold	(maximized	separately	
for	each	species,	and	for	SDMs	and	JSDMs,	respectively)	and	then	
stacking	 the	predicted	presences.	 Second,	 for	 assessing	 the	 accu‐
racy	 of	 species	 assemblage	 predictions,	 probabilistic	 stacks	 were	
derived	through	randomly	drawing	from	binomial	trials	with	the	site‐	
and	species‐level	occurrence	probabilities	as	success	rates	and	then	
stacking	 the	 random	 presences.	 Random	 number	 generation	 was	
repeated	100	times,	leading	to	a	set	of	100	probabilistic	stacks.	For	
assessing	 the	 accuracy	 of	 species	 richness	 predictions,	we	 simply	
summed	the	site‐level	occurrence	probabilities	of	all	species.	Third,	
the	probability	ranking	rule	requires	to	rank	the	species	in	each	site	
according	to	the	occurrence	probabilities	predicted	from	SDMs	and	
JSDMs	 and	 then	 only	 the	 most	 probable	 species	 are	 retained	 in	
the	community	prediction	with	the	maximum	number	of	species	per	
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site	predicted	from	MEM.	Fourth,	we	used	the	maximum‐likelihood	
approach	proposed	by	Calabrese	et	al.	(2014)	to	adjust	the	site‐level	
occurrence	probabilities	such	that	overprediction	and	underpredic‐
tion	bias	in	species	richness	estimates	is	reduced	and	then	repeated	
the	 probability	 ranking	 rule	 for	 these	 bias‐corrected	 occurrence	
probabilities.	Specifically,	we	estimated	the	adjustment	parameters	
on	the	training	dataset	during	model	building	and	then	used	these	
parameters	together	with	predicted	species	richness	from	MEMs	to	
correct	the	occurrence	probabilities	in	the	validation	dataset.	After	
that,	the	adjusted	site‐level	occurrence	probabilities	were	summed	
up	to	obtain	adjusted	species	richness	estimates	as	macroecological	
constraint	and	the	probability	 ranking	was	applied	to	the	adjusted	
site‐level	occurrence	probabilities.	The	different	model	types	(SDMs	
vs.	JSDMs),	stacking	procedures	(binary	vs.	probabilistic)	and	SESAM	
applications	(probability	ranking	without	and	with	bias	correction	of	
macroecological	constraint)	resulted	in	eight	different	sets	of	com‐
munity	predictions	(Figure	1).

All	 community	 predictions	 were	 evaluated	 in	 terms	 of	 accu‐
racy	of	site‐level	assemblage	prediction	and	species	richness	error.	
Accuracy	of	assemblage	predictions	was	derived	from	site‐level	con‐
fusion	matrices	 that	classify	 species	 into	 (a)	 true	 species	presence	
(observed	and	predicted),	 (b)	 false	species	presence	 (not	observed	
but	predicted),	(c)	false	species	absence	(observed	but	not	predicted)	
and	(d)	true	species	absence	(not	observed	and	not	predicted).	From	
the	 confusion	matrices,	we	 then	 calculated	 assemblage	 sensitivity	
as	a/(a + c),	assemblage	specificity	as	d/(b + d),	assemblage	TSS	(true	
skill	statistic)	as	assemblage	sensitivity	+	assemblage	specificity	−	1	
and	assemblage	prediction	success	as	a + d/N	with	N	being	the	total	
number	 of	 species	 in	 the	 local	 species	 pool	 (Pottier	 et	 al.,	 2013).	
Site‐level	 species	 richness	 errors	 were	 calculated	 as	 the	 absolute	
differences	between	observed	 and	predicted	 species	 richness	per	
site	divided	by	N.

We	used	mixed‐effect	ANOVAs	to	test	for	significant	differences	
in	 species	 assemblage	 and	 richness	 predictions	 between	different	
model	choices;	specifically,	differences	between	model	types	(SDMs	
vs.	 JSDMs),	 between	 stacking	 procedure	 (binary	 vs.	 probabilistic),	
between	stacking	and	ecological	 assembly	 rule	 (stacking	vs.	prob‐
ability	ranking),	and	between	probability	ranking	without	and	with	
bias	correction	of	the	macroecological	constraint.	We	corrected	for	
repeated	measures	by	using	site	as	random	effect.

All	analyses	were	conducted	using	r	version	3.3.2	(R	Core	Team,	
2016)	with	packages	sperrorest	(Brenning,	2012),	mgcv	(Wood,	2011),	
gbm	 (Ridgeway,	2013),	dismo	 (Hijmans,	Phillips,	 Leathwick,	&	Elith,	
2017),	 randomForest	 (Liaw	&	Wiener,	 2002),	boral	 (Hui,	 2016),	ncf 
(Bjornstad,	2016),	PresenceAbsence	(Freeman	&	Moisen,	2008),	eco-
spat	(Broennimann,	Cola,	&	Guisan,	2016)	and	lme4	(Bates,	Maechler,	
Bolker,	&	Walker,	2015).

3  | RESULTS

Climate	variables	showed	highest	cross‐validated	univariate	impor‐
tance	 for	 most	 species	 and,	 thus,	 the	 globally	 selected	 predictor	

sets	 contained	mainly	 climate	 variables	 (Figure	 S3).	 In	 addition	 to	
the	 climate	 variables,	 for	 both	 forest	 birds	 and	 tree	 species,	 also	
one	LiDAR	variable	describing	the	vertical	vegetation	structure	was	
selected	 (Figure	 S3).	 Spatial	 block	 cross‐validation	 showed	 com‐
parable	 single	 species	 prediction	 accuracy	 between	 JSDMs	 and	
GLMs	 while	 the	 ensemble	 SDMs	 showed	 higher	 accuracy.	 Mean	
predictive	performance	was	 fair	 to	excellent	 (Figure	S4,	Tables	S1	
and	S2).	Spatial	autocorrelation	in	model	residuals	was	apparent	at	
relatively	short	distances	(forest	birds	mean	±	SD:	5,971	m	±	6,267	m	
in	SDMs,	10,050	m	±	10,008	m	in	JSDMs;	tree	species	mean	±	SD: 
8,853	m	±	10,676	m	in	SDMs,	13,150	m	±	13,123	m	in	JSDMs;	Figure	
S5).	 These	 distances	 are	 short	 compared	 to	 the	 raw	 data	 (forest	
birds	mean	 ±	SD:	 42,687	m	±	 28,451	m;	 tree	 species	mean	 ±	SD: 
39,410	m	±	27,018	m;	Figure	S5).	Overall,	we	judge	the	two	datasets	
as	suitable	for	the	S‐SDM	and	JSDM	comparison.

The	 comparison	 of	 single‐species	 performance	 in	 SDMs	 and	
JSDMs	showed	that	ensemble	SDMs	generally	outperformed	JSDMs	
(JSDMs	for	birds,	mean	±	SD:	AUC	0.77	±	0.11,	TSS	0.44	±	0.18;	en‐
semble	SDMs	for	birds:	AUC	0.88	±	0.04,	TSS	0.62	±	0.11;	JSDMs	for	
trees:	AUC	0.78	±	0.09,	TSS	0.39	±	0.20;	ensemble	SDMs	for	trees:	
AUC	0.93	±	0.04,	TSS	0.75	±	0.14).	When	comparing	JSDMs	against	
single‐species	GLMs,	which	are	comparable	in	the	chosen	complex‐
ity	 of	 the	 environmental	 responses,	 JSDMs	 performed	 better	 in	
terms	of	specificity	(Tables	S1	and	S2,	Figure	S4).	Also	we	found	that	
JSDMs	tended	to	outperform	SDMs	in	terms	of	specificity	mainly	for	
rarer	species	(Figure	S6).

Joint	 species	 distribution	 models	 indicated	 that	 environment	
is	 the	 main	 driving	 factor	 of	 bird	 and	 tree	 species	 distribution	 in	
Switzerland.	Overall,	environmental	predictors	(in	particular	climate,	
cf.	Figure	S2)	accounted	 for	70%	and	71%	of	covariation	between	
bird	species	and	tree	species,	respectively	(calculated	by	comparing	
the	JSDMs	with	pure	latent	variable	models,	cf.	Hui,	2016).	We	clus‐
tered	species	according	to	the	similarity	 in	their	environmental	re‐
sponse	(using	hierarchical	clustering	with	average	linkage	strategy),	
which	revealed	two	and	three	distinct	species	groups	for	birds	and	
trees,	respectively,	that	correspond	to	lowland,	montane	and	alpine	
species	(Figures	2	and	3).	Forest	birds	showed	mainly	positive	resid‐
ual	correlations	in	montane	regions	while	negative	residual	correla‐
tions	were	only	apparent	in	lowland	species	(Figure	2).	By	contrast,	
trees	 also	 exhibited	negative	 residual	 correlation	 in	 alpine	 species	
(Figure	3).	Additionally,	we	found	strong	negative	residual	correla‐
tions	between	alpine	and	lowland	tree	species	while	such	patterns	
were	less	apparent	for	forest	birds.

Deviation	between	observed	species	richness	and	species	rich‐
ness	 predictions	 derived	 from	 stacking	 SDMs	 and	 JSDMs	 were	
largely	consistent	between	birds	and	trees	(Figure	4).	Binary	stacking	
led	to	overestimation	of	species	richness,	which	was	more	severe	in	
JSDMs	than	in	SDMs.	Probabilistic	stacking	as	well	as	the	probability	
ranking	rule	led	to	overprediction	of	low	species	richness	and	under‐
prediction	of	high	species	richness.	Underprediction	of	high	species	
richness	sites	was	stronger	for	trees	compared	to	birds.	Bias	correc‐
tion	considerably	reduced	the	overprediction	and	underprediction	in	
species	richness	predictions	of	forest	birds	but	not	of	trees.
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The	accuracy	of	community	assemblage	predictions	varied	con‐
siderably	between	sites	ranging	from	poor	to	outstanding	(Figure	5).	
Average	assemblage	TSS	values	over	all	sites	were	0.50	±	0.17	for	
birds	and	0.46	±	0.22	 for	 trees.	True	absences	of	species	 in	a	site	
(assemblage	specificity)	were	much	better	predicted	than	true	pres‐
ences	 of	 species	 (assemblage	 sensitivity;	 Figure	 S7).	 On	 average,	
birds	 showed	 slightly	 higher	 assemblage	 sensitivities	 than	 trees	
while	the	opposite	was	true	for	assemblage	specificity.	Assemblage	
prediction	success	was	high	with	an	average	of	78	±	8%	correctly	
predicted	bird	species	and	87	±	10%	correctly	predicted	tree	species	
per	site	(Figure	5).

Mixed‐effect	ANOVAs	were	used	 to	 test	 for	 significant	differ‐
ences	between	different	modelling	choices.	Generally,	assemblage	
TSS	 and	 assemblage	 prediction	 success	 from	 stacked	 SDMs	were	
significantly	higher	than	from	stacked	JSDMs	and	deviation	in	site‐
level	species	richness	was	significantly	lower	(Figure	5).	Probabilistic	
stacking	 always	 outperformed	 binary	 stacking	 in	 terms	 of	 assem‐
blage	 TSS,	 assemblage	 prediction	 success,	 assemblage	 sensitiv‐
ity	and	 richness	deviation.	By	contrast,	 it	 led	 to	 lower	assemblage	
specificity	 (Figure	 S7).	 Applying	 probability	 ranking	 as	 ecological	
assembly	rule	yielded	significantly	better	assemblage	and	richness	
predictions	 than	 either	 binary	 or	 probabilistic	 stacking	 (“EAR”	 in	
Figure	 5).	 Correcting	 for	 species	 richness	 bias	 prior	 to	 probability	
ranking	often	improved	species	assemblage	predictions	and	species	
richness	 predictions,	 although	 the	 absolute	 differences	 cannot	 be	
judged	as	ecologically	relevant	(“corr”	in	Figure	5).

4  | DISCUSSION

In	 this	 study,	 we	 tested	 the	 ability	 of	 stacked	 SDMs	 and	 JSDMs	
to	predict	 species	assemblages.	Our	 results	 indicate	 that	although	
JSDMs	show	much	promise	 for	bridging	species	distribution	mod‐
elling	and	community	ecology,	they	do	not	necessarily	outperform	
stacked	SDMs	in	predicting	site‐level	species	composition	and	spe‐
cies	richness.	Rather,	the	choice	of	stacking	procedure	and	ecologi‐
cal	assembly	rules	is	more	important.	We	thus	conclude	that	JSDMs	
do	not	necessarily	improve	species	assemblage	and	species	richness	
predictions,	but	yield	additional	insights	about	community	assembly,	
which	should	be	further	tested	for	other	taxa,	ecosystems	and	JSDM	
algorithms	and	possibly	also	for	other	questions.

Interestingly,	at	the	species	level	ensemble	SDMs	clearly	out‐
performed	 JSDMs	 while	 GLMs,	 whose	 response	 shapes	 are	 di‐
rectly	 comparable	 to	 the	 parametric	 JSDMs	 used	 here,	 showed	
rather	similar	performance	to	JSDMs.	One	important	aspect	why	
JSDMs	did	not	improve	(or	faired	worse	in	terms	of)	prediction	ac‐
curacy	could	be	the	fact	that	JSDM	predictions	to	new	sites	(here,	
hold‐out	data)	can	only	be	done	by	marginalizing	 (i.e.,	averaging)	
over	 the	 latent	 variables.	 For	 interpolation,	 JSDMs	could	poten‐
tially	achieve	higher	prediction	accuracy	compared	 to	SDMs	be‐
cause	in	such	case	JSDM	predictions	of	one	species	can	be	made	
conditional	 on	 the	 presence	of	 other	 species.	 For	 extrapolation,	
however,	our	results	indicate	that	JSDMs	do	not	improve	species‐
level	predictions.

F I G U R E  2   Joint	species	distribution	model	(JSDM)	estimates	of	environmental	correlation	(left)	and	residual	correlation	among	bird	
species	(right).	Species	were	ordered	and	groups	identified	by	hierarchical	clustering	of	their	environmental	correlation	using	an	average	
linking	strategy.	For	comparison,	the	same	order	was	used	for	depicting	residual	correlation.	The	boxplots	summarize	the	median	elevation	
of	each	bird	species'	occurrence	records	for	the	different	species	groups
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It	has	been	suggested	that	rare	species	should	profit	from	joint	
modelling	as	they	can	“borrow	strength”	from	estimates	of	the	more	
common	species	(Ovaskainen	&	Soininen,	2011;	Pollock	et	al.,	2014).	
However,	 our	 results	 did	 not	 corroborate	 this	 proposition	 and	we	
hardly	observed	that	rare	species	benefitted	from	JSDMs.	We	only	
found	a	tendency	that	JSDMs	improved	the	true	absence	rate	(spe‐
cies‐level	 specificity)	 in	 rare	 species,	 especially	 so	 in	 tree	 species.	
At	the	same	time,	SDMs	tended	to	improve	the	true	presence	rate	
(species‐level	sensitivity)	 in	rare	species	while	results	for	AUC	and	
TSS	were	equivocal.	Sensitivity	analysis	showed	that	 these	results	
hold	when	JSDMs	were	compared	against	ensemble	SDMs	as	well	
as	GLMs.	Our	results	do	thus	not	support	the	idea	that	JSDMs	may	
generally	yield	improved	predictions	for	rare	species.	However,	we	
did	only	 include	species	with	at	 least	50	presences	because	SDMs	
tend	to	be	unreliable	for	smaller	sample	sizes	(Breiner	et	al.,	2015).	
In	the	future,	it	could	be	explicitly	tested	how	accurately	JSDMs	are	
predicting	rare	species	 in	comparison	to	other	approaches	such	as	
the	ensemble	of	small	models	(Breiner	et	al.,	2015).

Our	 sensitivity	analysis	also	 indicated	a	 strong	effect	of	model	
complexity	 on	 predictive	 performance.	 JSDMs	 and	GLMs	 only	 in‐
cluded	 linear	 and	 quadratic	 terms	 and	 thus	 were	 bound	 to	 yield	
smooth	response	surfaces.	The	ensemble	SDMs,	on	the	other	hand,	
also	included	complex	machine‐learning	approaches	like	random	for‐
ests	and	boosted	regression	trees	that	produce	much	more	complex	
response	surfaces	(Elith	et	al.,	2006).	In	our	analyses,	these	ensembles	
typically	yielded	improved	predictions	at	the	species	level.	However,	

very	complex	models	are	not	always	desirable	as	this	could	limit	the	
transferability	when	extrapolating	beyond	the	sampled	environmen‐
tal	conditions	 (Merow	et	al.,	2014;	Wüest,	Münkemüller,	Lavergne,	
Pollock,	&	Thuiller,	2018;	Yates	et	 al.,	 2018).	 In	 the	 future,	 JSDMs	
of	different	complexities	 (Clark,	Nemergut,	Seyednasrollah,	Turner,	
&	 Zhang,	 2017;	 Harris,	 2016;	 Hui,	 2016;	 Ovaskainen	 et	 al.,	 2017)	
should	be	compared	to	investigate	how	response	surface	complexity	
affects	the	ability	of	JSDMs	to	predict	community	composition.

An	 advantage	 of	 JSDMs	 compared	 to	 SDMs	 is	 that	 they	 are	
able	to	disentangle	environmental	response	from	residual	correla‐
tions	among	species	that	could	be	indicative	of	biotic	interactions	
between	 these	 species	or	of	missing	and	subscale	environmental	
variability	(Dormann	et	al.,	2018;	Pollock	et	al.,	2014;	Zurell	et	al.,	
2018).	 Our	 models	 indicated	 that	 environment,	 in	 particular	 cli‐
mate,	 is	the	main	driving	factor	of	both	bird	and	tree	species	dis‐
tributions	in	Switzerland.	Based	on	the	environmental	correlations,	
we	were	able	to	separate	species	into	lowland	and	montane	to	al‐
pine	species.	 In	forests	birds,	we	found	negative	residual	correla‐
tions	mainly	between	lowland	species.	This	could	corroborate	the	
stress	gradient	hypothesis	that	competition	is	most	severe	for	low	
environmental	 stress	 (Meier,	 Edwards	 Jr,	 Kienast,	 Dobbertin,	 &	
Zimmermann,	2011).	However,	for	tree	species	the	pattern	looked	
slightly	 different	 with	 strong	 negative	 residual	 correlations	 also	
among	alpine	species.	Especially,	Alnus incana,	Alnus viridis and Salix 
caprea	 exhibited	 strong	 negative	 residual	 correlations	with	 other	
alpine	 species.	 All	 three	 of	 these	 species	 are	 pioneers	 and	 thus	

F I G U R E  3   Joint	species	distribution	model	(JSDM)	estimates	of	environmental	correlation	(left)	and	residual	correlation	among	tree	
species	(right).	Species	were	ordered	and	groups	identified	by	hierarchical	clustering	of	their	environmental	correlation	using	an	average	
linking	strategy.	For	ease	of	comparison,	the	same	order	was	used	for	depicting	residual	correlation.	The	boxplots	summarize	the	median	
elevation	of	each	tree	species'	occurrence	records	for	the	different	species	groups
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mainly	occur	where	and	when	other	tree	species	are	not	present,	
which	could	explain	these	negative	correlations.	The	positive	resid‐
ual	correlations	of	montane	to	alpine	species,	especially	 in	 forest	
birds,	could	be	indicative	of	facilitative	interactions.	This	is	in	line	
with	results	of	Gallien,	Zurell,	and	Zimmermann	(2018),	who	found	
stronger	facilitative	interactions	in	alpine	than	in	lowland	species,	
albeit	for	vascular	plants.	We	cannot	rule	out	that	the	positive	re‐
sidual	 correlations	 at	 least	 partly	 indicate	missing	 environmental	
variables	or	subscale	environmental	heterogeneity.	Interspecific	in‐
teractions	refer	to	local	processes	between	individuals	while	here	
we	model	species	distributions	at	coarser	spatial	resolution	(100	m	
for	trees	and	1	km	for	forest	birds).	Previous	studies	have	shown	
that	the	signal	of	competitive	interactions	is	more	easily	lost	at	in‐
creasingly	coarser	resolution	than	the	signal	of	facilitative	interac‐
tions	(Araújo	&	Rozenfeld,	2014;	Zurell	et	al.,	2018).	This	could	pose	
an	 additional	 explanation	why	we	mainly	 found	 positive	 residual	
correlations,	especially	in	the	coarser‐grained	bird	models.

Similar	to	the	species	level	analyses,	JSDMs	were	not	able	to	out‐
perform	S‐SDMs	 in	predicting	community	 level	properties	such	as	
site‐level	species	assemblage	and	species	richness.	Specifically,	for	
all	performance	measures	considered,	JSDMs	produced	significantly	
less	 accurate	 community	 level	 predictions.	However,	 the	 absolute	
differences	were	 so	 small	 that	 they	 cannot	 be	 judged	 as	 ecologi‐
cally	relevant.	For	both	SDMs	and	JSDMs,	choices	have	to	be	made	
on	 how	 species	 and	 site‐level	 occurrence	 probabilities	 are	 trans‐
lated	into	predictions	of	species	assemblages	and	species	richness.	

Generally,	probabilistic	 stacking	yielded	more	accurate	species	as‐
semblage	 and	 species	 richness	 predictions	 than	 binary	 stacking,	
and	 ecological	 assembly	 rules	 yielded	 more	 accurate	 predictions	
than	probabilistic	stacking.	The	correction	of	species	richness	bias	
suggested	by	Calabrese	et	al.	(2014)	only	marginally	improved	pre‐
dictions	based	on	ecological	assembly	rules.	This	surprisingly	small	
effect	of	the	bias	correction	is	most	likely	due	to	the	fact	that	pre‐
dictions	were	made	to	independent	(hold‐out)	data.	In	this	case,	the	
species	richness	bias	could	not	be	fully	corrected	because	the	site‐
level	adjustment	of	the	predictions	had	to	be	based	on	(inherently	
biased)	species	richness	predictions	(from	MEMs).

None	of	 the	tested	approaches	for	making	species	assemblage	
predictions	was	capable	of	completely	removing	the	over‐	and	un‐
derprediction	 biases	 in	 species	 richness	 predictions.	 Notably,	 the	
underprediction	of	high	species	richness	for	probabilistic	stacks	and	
probability	 ranking	was	much	more	 severe	 in	 the	 tree	 than	 in	 the	
bird	species.	These	differences	are	probably	related	to	lower	overall	
prevalence	 in	 the	 tree	 species	 (Figure	 S1),	which	 has	 been	 shown	
to	increase	underprediction	of	species	richness	(Zurell	et	al.,	2016).

Overall,	 we	 conclude	 that	 for	 community‐level	 predictions	
the	choice	of	how	species	and	site‐level	occurrence	probabilities	
are	 combined	 into	 species	 assemblage	 predictions	 is	 of	 higher	
importance	 than	 the	 choice	 of	 the	 model	 type	 used,	 SDMs	 or	
JSDMs.	 Highest	 site‐level	 prediction	 accuracy	 can	 be	 achieved	
when	constructing	species	assemblages	from	SDM	derived	occur‐
rence	 probabilities	 using	 the	 probability	 ranking	 rule	 and	 direct	

F I G U R E  4  Observed	versus	predicted	species	richness	for	different	underlying	model	types	(species	distribution	models	[SDMs]	vs.	joint	
species	distribution	models	[JSDMs]),	different	stacking	procedures	(binary	vs.	probabilistic),	and	for	the	application	of	ecological	assembly	
rules	(PRR,	probability	ranking	rule)	without	and	with	bias	correction	of	the	macroecological	constraints.	Coloured	lines	indicate	the	major	
axis	regression	of	observed	versus	predicted	species	richness.	Grey	lines	represent	the	1:1	line
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species	richness	predictions	from	MEMs	as	macroecological	con‐
straint.	Using	JSDMs	instead	of	SDMs	or	correcting	for	biases	in	
the	 species	 richness	 predictions	will	 only	 have	minor	 effects	 on	
the	community‐level	predictions.	Future	 studies	 should	evaluate	
these	propositions	across	more	 taxa	and	biogeographical	 realms	
as	 well	 as	 for	 other	 JSDM	 algorithms	 (e.g.,	 Harris,	 2015;	 Clark	
et	 al.,	 2017;	Ovaskainen	 et	 al.,	 2017).	 The	 promise	 of	 JSDMs	 to	
improve	 community	 predictions	 by	 incorporating	 co‐occurrence	
patterns	into	species	distribution	models	did	not	hold	in	our	case	
studies.	 In	 fact,	 JSDMs	did	not	even	 improve	single‐species	pre‐
dictions	 consistently.	 Specific	 aspects	 of	 JSDMs,	 such	 as	 condi‐
tioning	 predictions	 on	 the	 presence/absence	 of	 other	 species	
need	more	 attention	 and	may	 further	 our	 ability	 to	 successfully	
predict	 the	 composition	 of	 species	 assemblages.	 Clearly,	 JSDMs	

can	 help	 deriving	 hypotheses	 about	 community	 assembly	 pro‐
cesses	present	 in	the	system	and	could,	thus,	serve	as	screening	
tool	 for	 identifying	 important	biotic	 interactions	 in	 local	 species	
pools	(Ovaskainen	et	al.,	2017;	Zurell,	2017).	These	relative	bene‐
fits	of	SDMs	and	JSDMs	in	community	predictions	and	hypothesis	
testing	should	be	further	evaluated	in	the	future.
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