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Supplementary	Figures	
	

	

	

Figure	S1.	Principal	component	analyses	on	climate	and	land	cover	variables	in	Western	and	Eastern	
Hemisphere.	Shown	are	the	loadings	for	the	first	four	PCA	axes.	
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Figure	S2.	Niche	overlap	D	between	summer	breeding	and	winter	ranges	(left)	and	proportion	of	migratory	
bird	species	significantly	tracking	their	seasonal	niche	(right).	We	distinguish	long-distance	migratory	birds	
breeding	in	Nearctic	(N),	Western	Palearctic	(WP)	and	Eastern	Palearctic	(EP).	Niche	overlap	D	was	estimated	
along	niche	axes	obtained	from	PCA	for	the	three	predictor	sets	climate	only,	climate	+	NDVI,	and	climate	+	
land	cover;	outliers	are	not	displayed	in	the	boxplot.	Asterisks	indicate	significant	differences	following	a	
two-tailed	Wilcoxon	rank	sum	test	(**	p	<	0.01;	*	p	<	0.05).	The	width	of	the	boxplots	is	proportional	to	the	
species	numbers	within	geographic	regions	(N	n=329;	WP	n=132;	EP	n=256).	The	barplot	(right)	indicate	
results	from	the	similarity	tests	where	the	niche	(in	PCA	space)	during	summer	is	compared	to	random	niches	
during	winter	and	vice	versa.	

		 	

Figure	S3.		Niche	overlap	D	(left)	and	proportion	of	significant	niche	tracking	(right)	between	summer	
breeding	and	winter	ranges	of	long-distance	migratory	birds	employing	active	(A)	and	passive	(P)	flight	
strategies.	We	broadly	classified	all	species	that	regularly	employ	soaring	flight,	even	if	not	exclusively,	as	
passive	flyers.	Niche	overlap	D	was	estimated	along	niche	axes	obtained	from	PCA	for	the	two	different	
predictor	sets	climate	+	NDVI	(using	all	PCA	axes),	and	climate	+	land	cover	(using	the	first	four	PCA	axes).	
Asterisks	indicate	significant	differences	following	a	two-tailed	Wilcoxon	rank	sum	test	(**	p	<	0.01;	*	p	<	
0.05).	The	width	of	the	boxplots	is	proportional	to	the	species	numbers	within	each	flight	category	(n=637	for	
active	and	n=80	for	passive	flight	strategies).	The	colours	in	the	barplot	(right)	indicate	results	from	the	
similarity	tests	where	the	niche	(in	PCA	space)	during	summer	is	compared	to	random	niches	during	winter	
(red)	or	the	niche	during	winter	is	compared	to	random	niches	during	summer	(blue).	
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Figure	4.	Relationship	of	migratory	bird	species	niche	tracking	with	biogeographic	and	ecological	factors.	
Niche	tracking	is	given	by	the	standardised	effect	size	SESD	estimated	from	niche	similarity	tests.	To	explain	
SESD	values	from	traits,	multivariate	models	were	estimated	by	phylogenetic	regression	using	AIC-based	
stepwise	variable	selection	(n=717).	Asterisks	indicate	significant	coefficients	(p<0.05).	Bars	indicate	
importance	of	each	variable	selected	in	the	final	model	(note	that	linear	and	quadratic	terms	of	longitude	are	
summarised	into	a	single	importance	value),	and	given	percentages	sum	the	variable	importance	for	the	four	
different	categories	of	biogeographic	and	ecological	factors	(cf.	Table	1).	Overall	explained	variance	is	given	
by	the	adjusted	r2	of	the	multivariate	model.	
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Figure	S5.	Relationship	of	migratory	bird	species	niche	tracking	with	geographical	and	ecological	factors	for	
long-distance	migrants	employing	an	active	flight	mode	(n=637).	First,	niche	overlap	D	was	calculated	using	
ordination	(PCA)	on	the	two	different	predictor	sets	climate	+	NDVI	(red)	and	climate	+	land	cover	(blue).	
Then,	similarity	tests	were	conducted	to	test	for	deviation	of	D	from	random	expectation	(with	200	
permutations)	by	comparing	the	niche	during	summer	against	random	niches	during	winter	and	vice	versa.	
Niche	tracking	was	given	by	the	standardised	effect	sizes	defined	as	SESD	=	(observed	D	–	mean	of	simulated	
D)/standard	deviation	of	simulated	D.	Multivariate	models	were	then	estimated	by	phylogenetic	regression	
using	AIC-based	stepwise	variable	selection	to	explain	SESD	values	from	traits.	Asterisks	indicate	significant	
coefficients	(p<0.05).	Bars	indicate	importance	of	each	variable	in	the	regression	(please	note	that	linear	and	
quadratic	terms	of	the	same	variable	are	summarised	into	a	single	importance	value),	and	given	percentages	
sum	the	variable	importance	for	the	four	different	categories	of	geographic	and	ecological	factors	(cf.	Table1	
in	main	article).	Overall	explained	variance	is	given	by	the	adjusted	r2	of	the	multivariate	model.	
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Figure	S6.	Relationship	between	total	annual	niche	breadth	of	long-distance	migratory	bird	species	for	
climate	and	vegetation	productivity	(NDVI)	and	90	%	inter-quantile	ranges	of	the	single	environmental	
variables	(temperature,	precipitation	and	NDVI)	in	summer	and	winter.		
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Supplementary	Tables	
	

Table	S1.	Land	cover	classification.	The	original	UMD	land	cover	classes	were	aggregated	to	seven	broad	land	
cover	classes.	

UMD	land	cover	classification	 Aggregated	land	cover	classes	

Water	 Water	

Evergreen	needle-leaf	forest	

Woodlands	

Evergreen	broad-leaf	forest	

Deciduous	needle-leaf	forest	

Deciduous	broadleaf	forest	

Mixed	forest	

Woodland	

Wooded	grassland	

Shrublands	Closed	shrubland	

Open	shrubland	

Grassland	 Grassland	

Cropland	 Cropland	

Bare	ground	 Bare	ground	

Urban	and	built	 Urban	and	built	
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R	Codes	for	multi-dimensional	niche	overlap	analyses	
 
 
## Extension of the niche overlap analyses in the R package ecospat 
## adapted by D. Zurell (Swiss Federal Research Institute WSL, contact: 
damaris.zurell@wsl.ch),  
## to allow for multi-dimensional niche estimation using the R package 'ks'. 
## implemented in February 2017, last changed November 2017 
###################################################################################
############### 
 
# I call the ecospat package first so that all dependencies and imported packages 
are loaded (although the code actually just uses the niche.overlap function from 
ecospat). I have written a new version of the function for 'ecospat.grid.clim.dyn' 
called 'grid.clim.hypervolume', and a new version of the function 
'ecospat.niche.similarity.test' called 'niche.similarity.test.hypervolume' that 
work generically for up to 4 data dimensions. 
 
library(ecospat) 
library(ks) 
 
grid.clim.hypervol <- function (glob, glob1, sp, R, th.sp = 0, th.env = 0)  
{ 
    glob <- as.matrix(glob) 
    glob1 <- as.matrix(glob1) 
    sp <- as.matrix(sp) 
    l <- list() 
     
    if (ncol(glob) > 4)  
        stop("Calculate overlap with more than four axes is not tested yet; the 
binning procedure won't work")     
     
   require(ks) 
      
        xmin <- apply(glob,2,min) 
        xmax <- apply(glob,2,max) 
         
        gr = R 
 
        grid <- 
sapply(seq_len(ncol(glob)),FUN=function(x){seq(xmin[x],xmax[x],length=gr)})       
  
        glob1r =glob1; spr = sp 
              
        sp.dens <- 
kde(spr,binned=T,bgridsize=rep(gr,ncol(spr)),xmin=xmin,xmax=xmax)$estimate 
                       
        z <- sp.dens*nrow(sp)/sum(sp.dens)  #rescale density to the number 
of occurrences in sp 
         
        glob1.dens <- 
kde(glob1r,binned=T,bgridsize=rep(gr,ncol(glob1r)),xmin=xmin,xmax=xmax)$estimate    
        Z <- glob1.dens*nrow(glob1)/sum(glob1.dens)   #rescale density to the 
number of sites in glob1 
         
        Z[Z<max(Z)/1000] <- 0   
   z[z<max(z)/1000] <- 0  # remove infinitesimally small number generated by 
kernel density function 
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        z[Z==0] <- 0 
         
        z.uncor <- z/max(z) # rescale between [0:1] for comparison with other 
species 
        w <- z.uncor 
        w[w > 0] <- 1 
        z.cor <- z/Z 
        z.cor[is.na(z.cor)] <- 0 
        z.cor <- z.cor/max(z.cor) 
        l$grid <- grid 
        l$z <- z 
        l$z.uncor <- z.uncor 
        l$z.cor <- z.cor 
        l$Z <- Z 
        l$glob <- glob 
        l$glob1 <- glob1 
        l$sp <- sp 
        l$w <- w 
 
    return(l) 
} 
 
 
#---------------------------------------------- 
niche.similarity.test.hypervol <- function (z1, z2, reps, alternative = "greater", 
rand.type=1) { 
    R <- nrow(z1$grid)  
    l <- list() 
 if (ncol(z1$grid)>1)  { 
  dim.z <- dim(z1$Z) 
  shift.center <- function(center,rand.center) 
{t(apply(rand.center,1,FUN=function(x){x-center}))} 
  } else { 
   dim.z <- dim(z1$grid) 
   coords <- function(x,dim) {x} 
   shift.center <- function(center,rand.center) {shift = rand.center[,1]-
center[,1]; as.matrix(shift,dim.z)} 
   } 
    grid.i <- 
expand.grid(data.frame(matrix(seq_len(nrow(z1$grid)),nrow=nrow(z1$grid),ncol=ncol(z
1$grid)))) 
 
 obs.o<-ecospat.niche.overlap(z1,z2,cor=T)      
   #observed niche overlap 
 sim.o<-data.frame(matrix(nrow=reps,ncol=2))     
 #empty list of random niche overlap 
 names(sim.o)<-c("D","I") 
  
 center <- arrayInd(which(z2$z.cor==1),dim.z)    # define 
the centroid of the observed niche 
 rand.center <- 
arrayInd(sample(seq_len(prod(dim.z)),size=reps,prob=z1$Z/max(z1$Z),replace=F),dim.z
)   # randomly (weighted by environment prevalence) define the new 
centroid for the niche 
 xshift <- shift.center(center,rand.center) 
  
 sim.o1 <- sapply(seq_len(reps),FUN=function(i){ 
  grid.shift <- grid.i-xshift[i,] 
  i.shift <- rowSums(grid.shift < 1 | grid.shift > nrow(z1$grid)) < 1 
  z2.sim <- z2  
  z2.sim$z.cor[] <- 0 
  z2.sim$z.cor[as.matrix(grid.shift[i.shift,])] <- 
z2$z.cor[as.matrix(grid.i[i.shift,])] 
  z2.sim$z.cor <- (z2$Z!=0)*1*z2.sim$z.cor      # 
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remove densities out of existing environments 
   
  if (sum(z2.sim$z.cor)) ecospat.niche.overlap(z1,z2.sim,cor=T) else 
list(D=0,I=0) 
 }) 
    sim.o <- data.frame(D=unlist(sim.o1['D',]),I=unlist(sim.o1['I',])) 
 
    if (rand.type==2) { 
        center <- arrayInd(which(z1$z.cor==1),dim.z)    # define 
the centroid of the observed niche 
        rand.center <- 
arrayInd(sample(seq_len(prod(dim.z)),size=reps,prob=z2$Z/max(z2$Z),replace=F),dim.z
)   # randomly (weighted by environment prevalence) define the new 
centroid for the niche 
        xshift <- shift.center(center,rand.center) 
         
        sim.o2 <- sapply(seq_len(reps),FUN=function(i){ 
            grid.shift <- grid.i-xshift[i,] 
            i.shift <- rowSums(grid.shift < 1 | grid.shift > nrow(z2$grid)) < 1 
            z1.sim <- z1 
            z1.sim$z.cor[] <- 0 
            z1.sim$z.cor[as.matrix(grid.shift[i.shift,])] <- 
z1$z.cor[as.matrix(grid.i[i.shift,])] 
            z1.sim$z.cor <- (z1$Z!=0)*1*z1.sim$z.cor     
 # remove densities out of existing environments 
             
            if (sum(z1.sim$z.cor)) ecospat.niche.overlap(z2,z1.sim,cor=T) else 
list(D=0,I=0) 
        }) 
        sim.o <- 
rbind(sim.o,data.frame(D=unlist(sim.o2['D',]),I=unlist(sim.o2['I',]))) 
 
    } 
 
 
 l$sim<-sim.o          
 # storage 
 l$obs<-obs.o          
 # storage 
 
    if (alternative == "greater") { 
        l$p.D <- (sum(sim.o$D >= obs.o$D) + 1)/(length(sim.o$D) +  
            1) 
        l$p.I <- (sum(sim.o$I >= obs.o$I) + 1)/(length(sim.o$I) +  
            1) 
    } 
    if (alternative == "lower") { 
        l$p.D <- (sum(sim.o$D <= obs.o$D) + 1)/(length(sim.o$D) +  
            1) 
        l$p.I <- (sum(sim.o$I <= obs.o$I) + 1)/(length(sim.o$I) +  
            1) 
    } 
 
 l$ses.rank.D <- ((sum(obs.o$D > sim.o$D)+1)/(length(sim.o$D)+1))  # 
standardised effect size based on the rank of the observation among simulated 
values 
 l$ses.rank.I <- ((sum(obs.o$I > sim.o$I)+1)/(length(sim.o$I)+1)) 
 l$ses.z.D <- (obs.o$D - mean(sim.o$D)) / sd(sim.o$D)    # 
standardised effect size calculated as standardised mean difference between 
observation and simulated values (the z-score) 
 l$ses.z.I <- (obs.o$I - mean(sim.o$I)) / sd(sim.o$I) 
 
 return(l) 
} 
	


