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Abstract

Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate

and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks.

Recently, several new approaches to model range dynamics have been developed to supplement correlative species

distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis

has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmark-

ing five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple disper-

sal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic

range model (DRM). We specifically test the effects of demographic and community processes on model predictive

performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predic-

tive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions

under climate change substantially compared to purely correlative SDMs, and the population dynamic models also

predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more com-

plex demographic and community processes, simple SDM hybrids including only dispersal often proved most reli-

able. Finally, we found that structural decisions during model building can have great impact on model accuracy, but

prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the

clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasize

several needs for further model and data improvement. We propose and discuss perspectives for improving range

projections through combination of multiple models and for making these approaches operational for large numbers

of species.
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distribution models, virtual ecologist approach
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Introduction

As climate change advances in its threat to biodiversity

worldwide, reliable predictions of range dynamics are

needed to anticipate and mitigate potential impacts

(Pereira et al., 2010; Bellard et al., 2012), and we have

seen an upsurge of related methods and applications in

recent years (Normand et al., 2014; Lurgi et al., 2015).

Range shifts are complex ecological processes driven

by population dynamics and dispersal. These processes

are co-determined by a plethora of other factors
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including changes to the abiotic and biotic environment

(Sexton et al., 2009). Adequately representing these

interacting processes in an operational model and col-

lecting data for reliably estimating the many parame-

ters of such complex models is a formidable challenge

even for a single species (Ehrl�en & Morris, 2015)

let alone for complex ecosystems. Older models relied

on highly simplified conceptualizations where the

abiotic environment is the essential driver of climate-

induced range shifts ignoring any demographic pro-

cesses involved in range shifts. These so-called species

distribution models (SDM; Guisan & Thuiller, 2005;

Guisan & Zimmermann, 2000) have reached high

popularity for providing biodiversity scenarios under

climate change, owing to the strong simplification of

the represented processes and their relative ease to use.

However, their use for climate change projections has

been discussed controversially (Dormann et al., 2012;

Thuiller et al., 2013) because SDMs assume that

observed species’ distributions are not affected by dis-

persal limitations (Svenning et al., 2008) or source-sink

dynamics (Holt et al., 2005), and ignore complex tran-

sient dynamics during range shifting (Zurell et al.,

2009; Lawler et al., 2013).

To address these issues, more mechanistic

approaches of modelling range dynamics have been

advocated (Thuiller et al., 2008; Gallien et al., 2010) and

several frameworks have been developed (or revived)

(Pereira et al., 2010; Ehrl�en & Morris, 2015; Lurgi et al.,

2015). While all of them attempt to overcome the limita-

tions associated with SDMs, their ability to improve

projections for species’ range dynamics has never been

compared systematically. The lack of such evaluation is

likely due to the difficulty to get appropriate bench-

mark data, consisting of information on distribution,

abundance and demography. Such complex datasets

are rare and benchmarking may be hampered if not all

processes occurring in these ecosystems are fully

understood (Cheaib et al., 2012). We propose to conduct

benchmarking of new methods for modelling range

dynamics using simulated community data, which

allows controlling all relevant ecological processes driv-

ing species distribution and track transient dynamics in

space and time (‘virtual ecologist approach’, Zurell

et al., 2010).

We compare five generic modelling frameworks for

predicting range dynamics capable of (fast) calibration

for any single species (Fig. 1). The choice of models

was guided by our objectives to include frameworks

that are representative of current approaches for pre-

dicting actual abundance (Ehrl�en & Morris, 2015), that

differ in their underlying assumptions and in the com-

plexity of data and process detail needed to parameter-

ize them, and for which we could find proficient users

to run the simulations for our study to assure a fair

comparison. Due to a lack of common terminology, we

refer to all five models (including SDMs) as range mod-

els and to those models that explicitly consider

dynamic processes of range shifts (dispersal, popula-

tion dynamics) as range dynamic models (Fig. 1). A

subset of these models relies on SDMs to predict habitat

suitability and infer demographic rates (‘SDM

hybrids’). One approach infers demographic rates

directly from the data and models habitat suitability as

an outcome of demographic processes (Fig. 1).

We explicitly focus our comparison of models on pre-

dicting range dynamics of single species. Virtual spe-

cies, however, were simulated within a virtual

community to imitate constraints on species distribu-

tion and abundance resulting from both abiotic factors

and biotic interactions. We first simulated virtual com-

munities using a dynamic, individual-based, multi-spe-

cies simulation model, and then tracked these

communities under climate change. Range models were

calibrated using data from the output of the virtual

community model. We tested the effects of different

demographic (dispersal, source-sink dynamics) and

community processes (single species, species sorting,

neutral dynamics) as well as of environmental stochas-

ticity on model predictive performance.

By comparing the performance of the different range

models before and during climate change we aim at

answering the following questions: (i) Do SDMs and

different range dynamic models predict current spe-

cies’ distribution and abundance equally well? (ii) Do

more complex, demography-based approaches consis-

tently outperform SDMs under climate change? (ii)

How is predictive model performance affected by pre-

vailing demographic and community processes? (iv)

What are the effects of structural decisions during

model building? We found that more complex range

dynamic models improved current range projections

considerably compared to purely correlative SDMs.

Under climate change, simpler range dynamic models

often outperformed more complex models, especially

when benchmarking data were simulated with more

complex demographic and community processes. We

discuss guidelines and perspectives for increasing the

reliability of climate change-induced range predictions

and for applying range dynamic models more widely

in climate impact assessments.

Material and methods

Overview of range dynamic models and hypotheses

We compare a classical SDM and four different range

dynamic models, three of which are SDM hybrids (Fig. 1,

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664
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Appendix S1 in Supporting Information). The simplest SDM

hybrid, MigClim, supplements SDM predictions with

distance-dependent colonization probabilities (Engler & Gui-

san, 2009; Normand et al., 2013). However, local demo-

graphic processes including regeneration and mortality are

not explicitly accounted for although these are crucial for

predicting population viability and spread rates. More com-

plex SDM hybrids couple SDM-derived habitat suitability

maps and population models (Keith et al., 2008; Dullinger

et al., 2012; Zurell et al., 2012b). These models can be cali-

brated with simple demographic information as we demon-

strate with DemoNiche (Nenz�en et al., 2012) or can be

Fig. 1 Main characteristics of implemented range models used for model intercomparison. Habitat suitability maps (darker gray

shades indicate higher suitability) or presence/absence maps (P/A, with black indicating presence) derived from SDMs serve as input

to SDM hybrids. These are then linked with dispersal kernels and with a population model (except MigClim). DRMs infer the environ-

ment–demography relationship directly from the data and do not rely on SDMs, which is a major difference to DemoNiche and LoLi-

Pop. Importantly, DemoNiche is calibrated on demographic data, while the demographic models in LoLiPop and DRM are calibrated

on spatial abundance data with respective P/A maps and abundance time series. Different structural relationships may be assumed to

link MigClim and DemoNiche to SDM-derived habitat suitability or P/A predictions. MigClim outputs P/A maps as predictions, while

all other dynamic range models output abundance maps as predictions (darker blue shades indicate higher abundances). The prefix

‘R:’ indicates the available R package (R Development Core Team 2014).

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664
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inversely fitted to abundance data as demonstrated by the

application of LoLiPop (Cabral & Schurr, 2010).

The value of such SDM hybrids is debated, mainly

because of potential circularity problems (Gallien et al.,

2010) and because the relation of SDM-derived habitat

suitability to species demographic parameters remains

unclear (Thuiller et al., 2014). Dynamic range models

(DRM) have been introduced to overcome these issues.

They do not rely on SDM output and directly relate demo-

graphic rates to environmental factors and simultaneously

estimate parameters of the population model and the

demography-environment relationship from abundance and

distribution data (Pagel & Schurr, 2012). We hypothesize

that predictive performance under climate change will

increase from left to right in Fig. 1 because (i) range

dynamic models explicitly model the dispersal process and

should hence outperform simple SDMs, (ii) population

dynamic models (DemoNiche, LoLiPop, DRM) additionally

model abundance dynamics from differently resolved

demographic processes and should thus outperform Mig-

Clim that only simulates potential colonization, and (iii)

DRMs jointly estimate the effects of dispersal and demog-

raphy on distribution and abundance dynamics and should

thus outperform SDM hybrids which may suffer from cir-

cularity problems.

Virtual species/communities

Simulation model. An individual-based, spatially explicit,

stochastic model (IBM; Gravel et al., 2006; M€unkem€uller et al.,

2012) was adapted to simulate the dynamics of a focal species

and its co-occurring competitors in heterogeneous environ-

ments. The IBM is a cellular automaton in which each sub-cell

is characterized by unique environmental conditions (temper-

ature and soil moisture) and can support one sessile individ-

ual. In the following, we provide a simple overview over the

main characteristics of the simulation model, while more

details are given in Appendix S2.

The IBM’s spatial resolution only allows individual counts,

yet the range models work at the population level. We there-

fore implemented a hierarchy of two spatial scales so that the

sessile individuals are interacting locally but that aggregations

at larger scale (10 9 10 sub-cells) provide information on com-

munity composition and species abundance, which serve as

input for the range model comparison. One time step corre-

sponds to 1 year and the four main processes within one time

step are large-scale, contagious disturbances at the coarse res-

olution, and then the local (sub-cell) processes of adult mortal-

ity, propagule supply, and recruitment of propagules to adult

size (Fig. S1).

1. Large-scale contagious disturbances like fire or windthrow

act at the coarse scale with an overall probability of 0.05,

resulting in stochastic population dynamics and incomplete

range filling. Disturbances were omitted for some scenarios

(see Simulations), and are initiated in randomly selected

cells at the coarse scale and spread to the eight nearest

neighbours. In response to disturbance, individuals are

killed with a probability of 0.9.

2. Within each time step, adults die with a probability of 0.1

and can be replaced by recruits from the local community

or by immigrants.

3. Propagule supply is determined by offspring production

and by propagule dispersal. Only adults that are at least

one time step old can produce propagules. Offspring pro-

duction rate is determined by the local (temperature and

moisture) environment, and is described by a two-dimen-

sional Gaussian function for the reproductive niche, with

each species having a unique optimum. The Gaussian func-

tion is cut off at a threshold of 0.001 to obtain finite niche

breadth. Dispersal is simulated using a negative exponen-

tial dispersal kernel where the rate parameter a determines

the mean dispersal distance (1/a).
4. Recruitment into empty space or by competitive replace-

ment follows a lottery function of dispersal-driven propag-

ule supply and interspecific differences in competitive

ability. Competitive performance depends on the species’

niche, in particular the probability k of propagules to sur-

vive in the understory of adults prior to recruitment, thus

mimicking simple resource competition. An individual’s

competitive performance (the probability of a propagule to

establish and replace the resident) is proportional to the

ratio between its survival probability k and that of the resi-

dent (or between k and a threshold of 0.1 in empty cells).

The survival probability k is a function of the local environ-

ment, and we assumed a two-dimensional Gaussian func-

tion for the survival niche (driven by soil moisture and

temperature, see section ‘Simulations and sampling’ for

more detail), which is equivalent to the reproductive niche,

if not mentioned otherwise. The cells can stay empty, if the

overall propagule rain is too small.

The species’ fundamental niche is equivalent to the repro-

ductive niche while the realized niche can be smaller due to

interspecific competition (determined by the overlap of

propagule survival niches of competing species), or can be lar-

ger due to source-sink dynamics, which occur in the IBM if

the species’ survival niche is wider than its reproductive

niche.

Simulations and sampling. The virtual communities were

simulated in artificial landscapes of 20 9 125 (coarse-scale)

cells. Spatially auto-correlated patterns of soil moisture in the

coarse-scale landscape were generated from two-dimensional

fractal Brownian motion. Spatial variation in temperature was

represented as a linear latitudinal gradient with added spa-

tially auto-correlated noise. Sub-scale environmental hetero-

geneity at the scale of the 10 9 10 sub-cells was added as

normally distributed noise to the coarse-scale cells’ mean tem-

perature and moisture. We simulated temporal variability in

temperature by adding for each time step a temporally auto-

correlated random deviate to temperature.

Simulations were initiated by randomly distributing the vir-

tual species in their respective suitable habitats. First, simula-

tions were run for 900 spin-up years under current

environmental conditions and variability to ensure that spe-

cies/communities were in (dynamic) equilibrium with the

environment. After the end of the spin-up period (hereafter

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664
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referred to as year 0), climate change was initiated with a lin-

ear increase in temperature of 3°C over a period of 100 years.

Soil moisture patterns were assumed to remain constant over

the simulation period.

We ran scenarios for three different community types: (i)

neutral dynamics, (ii) species sorting, and (iii) single species

without any competitors. The first two community simula-

tions consisted of nine interacting species. For the species-sort-

ing scenarios, the niche optima of the eight co-occurring

species in environmental space were symmetrically arranged

around the focal species niche with a fixed radius (Table S1,

Fig. S4). In the neutral scenarios, all species had equivalent

niche optima and widths. All species within a community

were assumed to have equal dispersal ability.

We ran four scenarios for each type of community

dynamics:

1. SR: short-range dispersal without large-scale disturbances

(with a = 1/mean dispersal distance = 0.05).

2. LR: like SR but with long-range dispersal (LR; a = 0.1).

3. SR + sinks: source-sink dynamics where the reproductive

niche was narrower (by 1/3) than the survival niche result-

ing in the realized niche being larger than the fundamental

niche (Fig. S4).

4. SR + cont: with large-scale contagious disturbances.

Overall, we ran 12 different scenarios as input for the subse-

quent range model intercomparison. To avoid increasing

prevalence in the single species and in the source-sink scenar-

ios, the fundamental niches for these scenarios were reduced

(Table S1 and Fig. S4).

Sampling data were gathered at the coarse spatial scale. We

assumed no detection errors and thus species data always rep-

resented a ‘perfect’ sampling of the virtual world. Different

kinds of data were sampled according to the input needs of

the range models (Fig. 1), including presence-absence and

abundance data (n = 500, year 0), abundance time series

(n = 50, years �10 to 10), and mean demographic rates (years

�20 to 0; Appendix S1).

Calibration of range models

SDMs were fitted by relating the sampled presence/absence

data from year 0 to the two environmental variables using the

ensemble platform biomod2 in R (Thuiller et al. 2009) and sim-

ple averaging was used to derive consensus predictions.

Predicted habitat suitability was transformed to presence/ab-

sence predictions by applying a TSS-maximizing threshold

(true skill statistic; Allouche et al., 2006).

MigClim combines habitat suitability or presence/absence

predictions from SDMs with a dispersal kernel to predict colo-

nization probabilities (Engler & Guisan, 2009). Here, habitat

suitability was rescaled to range between 0 and 1 and a sig-

moidal relationship was used to relate habitat suitability to

colonization probability. Other structural relationships were

tested and are discussed in Appendices S1 and S4. As disper-

sal kernel we took the known dispersal kernel from the IBM.

DemoNiche is a stage-structured matrix population model

that constrains demographic rates or carrying capacity by

habitat suitability (given by an SDM) and connects local

populations by a dispersal kernel (Nenz�en et al., 2012).

Thereby, choices have to be made regarding the demographic

property (vital rates or carrying capacity) that should be

constrained and the relationship to habitat suitability (linear,

sigmoidal, threshold). Here, we evaluated predictive perfor-

mance of different model configuration for year 0, and aver-

aged predictions of the five best model configurations (see

Appendix S1). Appendix S4 provides a more detailed discus-

sion on effects of structural uncertainty. We used a box-con-

straint variable metric algorithm to calibrate the transition

matrix by minimizing differences between observed and pre-

dicted mean demographic rates (Appendix S1). Calibrating

the transition matrix was necessary because the induced func-

tional relationship between habitat suitability and demo-

graphic transition probabilities implicitly assumes that

demography is known for optimal conditions (habitat suitabil-

ity = 1) while demographic rates are usually averaged across

the population. As dispersal kernel we took the known disper-

sal kernel from the IBM.

LoLiPop simulates local population dynamics with different

populations connected by two- dimensional dispersal kernels

(Cabral & Schurr, 2010). Population dynamics can only take

place on suitable cells (given by SDM). Here, local population

dynamics followed a Beverton-Holt model extended with

Allee effects (Cabral & Schurr, 2010). Demographic parame-

ters were estimated from spatial abundance data from year 0

using maximum likelihood estimation. As dispersal kernel we

took the known dispersal kernel from the IBM.

The DRM is based on a simple stochastic model of local

population dynamics (Ricker model) coupled by a negative

exponential dispersal kernel. The demography–environment

relationship is formulated as a regression of intrinsic popula-

tion growth rate against the environmental variables and the

carrying capacity is assumed to likewise vary proportional to

the growth rate. This demography–environment relationship,

the proportionality between growth rates and carrying capac-

ity as well as the mean dispersal distance are jointly estimated

from presence/absence data from years �10 and 10 and from

50 randomly selected abundance time series (covering the

same 20 years) using a hierarchical Bayesian modelling

approach (Pagel & Schurr, 2012).

Assessing range model performance

Models were calibrated under equilibrium conditions and

were then used to project species distribution and abundance

under climate change. Predictive performance was evaluated

against full known truth for each time step within the

100 years of climate change. We assessed accuracy of spatial

predictions by first converting all predictions to binary maps

and then calculating TSS (Allouche et al., 2006). Correlations

between observed and predicted abundance as well as pre-

dicted occurrence probabilities were assessed using Spear-

man’s rank correlation coefficient Rho. Furthermore, we

compared positions of range front, centre and rear edge by

calculating quantiles (95%, 50% and 5%, respectively) of the

observed and predicted latitudinal positions. Last, we

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664
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calculated relative deviation in total abundance (summed over

all cells) as difference between predicted and observed abun-

dance divided by observed abundance (except for SDMs and

MigClim), and differences in relative abundance estimates,

which is the relative decrease in observed and predicted abun-

dance since year 0.

Results

Stochastic community IBM

The 12 different scenarios led to distinct spatial and

temporal distribution of presence-absence and abun-

dance of the focal species (Appendix S2). Generally,

short-range dispersal resulted in stronger spatial clus-

tering of populations. Differences in spatial clustering

for long- and short-range dispersal were particularly

pronounced in neutral communities and large-scale

contagious disturbances resulted in even patchier spa-

tial distributions. Under climate change, the focal spe-

cies exhibited range shifts accompanied with distinct

population decreases. Also, for all scenarios the focal

species showed distinct time lags in range filling fol-

lowing climate change with dispersal limitations at

the range front and persistence in unsuitable condi-

tions at the rear range edge (Figs 2 and S6). Dispersal

limitations were more pronounced in short-range dis-

persal scenarios and under biotic interactions. In the

species-sorting scenario, competing species were

blocking the range front, whereas in neutral commu-

nities, dispersal success became more random due to

strong spatial clustering. Overall, these diverse distri-

butions provided a solid basis for comparing the

predictive performance of SDMs and range dynamic

models.

Range model performance under current conditions

For the observation period (year 0), DRMs best pre-

dicted the focal species’ mean and maximum abun-

dances along the temperature gradient (Figs 2, S7 and

S8). SDMs often slightly overestimated occurrence

probability at range margins, which propagated differ-

ently to the SDM hybrids. For example, LoLiPop pre-

dicted local abundances near range margins quite

successfully but underestimated abundances at range

centres, whereas DemoNiche overpredicted local abun-

dances across nearly the whole range. Correspond-

ingly, DRMs obtained highest TSS and Rho in year 0

for most scenarios although differences between range

models were minor except that DemoNiche achieved

much lower TSS scores while Rho scores were consis-

tently high (Fig. 3). By contrast, LoLiPop and SDMs

predicted range positions under equilibrium conditions

best while DemoNiche and DRMs predicted slightly

too large ranges. DRMs and LoLiPop approximated

Fig. 2 Realized temperature range of focal species for the long-range(LR) and short-range (SR) dispersal variants of the species-sorting

scenario as approximated by mean observed abundances along the temperature gradient. Top row shows the niche filled by the virtual

species before (year 0) and after climate change (year 100). For both scenarios, realized ranges in year 100 exhibit lower overall abun-

dances and a shift to the warmer end of the temperature tolerance (i.e. dispersal limitation at the cold front, persistence at the warm

rear edge). Bottom row shows the corresponding predictions by the different range models for year 0.

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664
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total abundance best while DemoNiche generally over-

estimated abundances (Fig. 4).

Range model performance under a warming climate

Under climate change, prediction accuracy of SDMs

decreased significantly because the range shifting

potential was greatly overestimated by the full-disper-

sal SDMs (Fig. 3), especially under short-range disper-

sal (Figs 5 and 6). All range dynamic models were able

to overcome these limitations to some extent, achieving

higher TSS and Rho values than SDMs and generally

showing less deviation between observed and pre-

dicted range margins (Figs 3, 5 and S11-S27). Here,

DRMs were outperformed by SDM hybrids though

often only marginally, with MigClim and DemoNiche

showing considerably higher TSS scores, slightly higher

Rho scores and smallest average deviations from range

centre and rear edge. LoLiPop predicted lowest average

deviations from range front. Again, total abundance

was best predicted by DRMs and LoLiPop, and overes-

timated by DemoNiche. However, in terms of relative

change in abundance, all population models produced

more similar projections with a tendency towards

underestimating the relative abundance and, thus,

overestimating extinction risks (Figs 4 and S28-S29). On

average, DemoNiche best predicted relative change in

abundance.

Effects of demographic and community processes

Prediction accuracy (TSS and Rho) of all range models

decreased most under short-range dispersal and for

scenarios including biotic interactions (Fig. 6). Under

neutral dynamics, which produced the most complex

range-shifting dynamics, the simple MigClim generally

performed best. Overestimation of future total abun-

dance by DemoNiche was particularly strong under

neutral dynamics. Here, LoLiPop predicted total abun-

dance best, while there were no clear winners among

the population models for the other cases. However, in

some scenarios, LoLiPop estimated quite extreme

demographic rates that resulted in over-compensatory

Fig. 3 Boxplots depicting performance of different range mod-

els over all scenarios. We show TSS, Spearman’s rank correla-

tion coefficient Rho and deviations from range front, centre and

rear for the years 0 and 100. SDM: species distribution model,

MC: MigClim, DN: DemoNiche, LLP: LoLiPop, DRM: dynamic

range model.

Fig. 4 Boxplots depicting abundance estimates of population

models over all scenarios. Top row shows the factor of deviation

in total abundance with positive and negative values referring

to overestimation and underestimation of true abundance,

respectively. Bottom row shows deviation in relative abundance

with year 0 as reference. DN: DemoNiche, LLP: LoLiPop, DRM:

dynamic range model.

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664
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local population dynamics, most severely for the long-

range dispersal, species sorting scenario (Fig. S29).

Generally, underestimation of relative abundance and,

thus, overestimation of extinction risks was more sev-

ere under long-range dispersal and, to a minor extent,

under neutral dynamics.

Effects of structural uncertainties

Effects of structural uncertainty were very pronounced

in all range dynamic models (Appendix S4). For exam-

ple, assuming a linear relationship between SDM-

derived habitat suitability and colonization probability

in MigClim led to misleading predictions of near-com-

plete colonization of the entire grid in long-range dis-

persal scenarios (Figs S30-S31). In DemoNiche, prior

knowledge of the demography-environmental relation-

ships helped reducing uncertainty considerably. Also,

model configurations that achieved highest accuracies

under equilibrium conditions usually remained among

the best for climate change predictions. We found no

clear differences between constraining demographic

rates or carrying capacities by habitat suitability in

DemoNiche, although the latter showed reduced accu-

racy in long-range dispersal scenarios (Figs S32-S34).

Discussion

We took the challenge of benchmarking state-of-the-art

range models of varying complexity using a compre-

hensive set of simulated data that account for demo-

graphic and community processes. Based on the

comparison across these benchmark data and diverse

model outputs, our initial questions can be answered as

follows: (i) Under current climate, more complex range

dynamic models like DRMs better fit the observed spe-

cies distributions and abundances, although differences

are small. (ii) Under climate change, all dynamic

approaches improved predictions over simple SDMs.

We could not, however, identify a single, best approach

for making predictions. Predictions of absolute abun-

dance differed markedly between population models

while predictions of relative abundance were similarly

accurate. (iii) Differences in dispersal ability and com-

plex biotic interactions may introduce high uncertainty

in range predictions, while the effects of source-sink

dynamics and increased disturbance were minor. (iv)

In all range dynamic models, structural decisions dur-

ing model building can have great impact on model

accuracy, but prior system knowledge on important

processes can reduce these uncertainties considerably.

Our results reassure the clear merit in using dynamic

approaches for range predictions. But they also empha-

size several needs, namely: (i) to compare and combine

multiple model outcomes for better capturing the

uncertainty associated with range predictions under cli-

mate change; (ii) to gather more and higher quality data

on species’ demography; (iii) to run preliminary tests

with each demographic model in order to optimize the

structural decisions and settings; and (iv) to incorporate

assembly processes for better capturing the within-

community dynamic processes and their constraints on

range dynamics. In summary, implementing these

insights will greatly help advancing our ability of pre-

dicting future range dynamics and making these

approaches operational for larger numbers of species.

Fig. 5 Observed abundances of virtual species for years 0 and 100, and predictions of range models for year 100 after climate change

for the species sorting scenario with long range dispersal (left) and short range dispersal (centre), and for the neutral dynamics scenario

with short range dispersal (right). Abundances are presented in blue shading with darker colour indicating higher abundance. For

SDMs, predicted habitat suitability is shown with sandy colours indicating suitability values that correspond to predicted absences,

and grey shading indicating suitability values that correspond to predicted presences, with darker colours indicating higher habitat

suitability. MigClim predicts colonised (in black) vs. uncolonised cells. Grey shading in MigClim indicates that these cells were not

colonised in all replicate runs. SDM: species distribution model, MC: MigClim, DN: DemoNiche, LLP: LoLiPop, DRM: dynamic range

model.
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Range dynamic models on a par for current climates

Under current climates, DRMs provided the best fit in

most cases, although their advantages in prediction

accuracies were generally small compared to other

range dynamic models and also compared to SDMs,

which were not consistently outperformed by the more

dynamic approaches. DRMs jointly estimate the

demography-environment relationship, dispersal and

other demographic parameters and, thus, avoid possi-

ble circularities that might arise from the fitting steps

for SDM hybrids (Gallien et al., 2010; Pagel & Schurr,

2012). Yet, for the source-sink scenarios that could be

assumed to be problematic for SDM hybrids while not

for DRMs (Pagel & Schurr, 2012; Schurr et al., 2012), we

did not find evidence that DRMs generally outperform

hybrids.

Separate fitting steps in SDM hybrids of first fitting

SDMs and then fitting the population model may lead

to bias when species are not in equilibrium with their

environment. However, if species are dispersal limited

in some parts of their range but the entire niche in

environmental space is well-covered by data, as is the

case for our source-sink and contagious disturbance

scenarios, circularity in SDM hybrids appear not to be a

limiting problem. If, on the other hand, observed spe-

cies’ distributions are biased by dispersal limitations

such that parts of the environmental niche are not

filled, then DRMs may be the preferred choice, as this

approach directly accounts for the (limited) dispersal in

Fig. 6 Prediction accuracies (gray) and error rates (orange/blue) obtained for range models under different scenarios, with circle sizes

being proportional to accuracy or error rate. The table compares measures before (open circles) and after climate change (filled circles).

The more similar filled circles are to open circles, the less decrease in prediction accuracy or the less increase in error rates were

observed over time. Squares indicate the best model for year 0 (thin lines) and year 100 (thick lines). Accuracy measures: TSS (true skill

statistic) and Rho (Spearman’s rank correlation coefficient). Error measures: M05, M50 and M95: absolute differences between observed

and predicted range margins (5%, 50% and 95% quantiles of latitudinal distribution). N: factor by which predicted absolute abundance

overestimates/underestimates observed abundance. N/N0: absolute difference between observed and predicted relative abundance.

Orange indicates overestimation and blue underestimation. Maximum circle sizes correspond to TSS = 0.87, q = 0.89, M = 37 cells,

N = 22, and N/N0 = 57%.
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the estimation of the species’ niche and can thereby

reduce the bias that may otherwise arise from the dise-

quilibrium (Pagel & Schurr, 2012). Still, more research

is needed to (i) develop robust approaches for assessing

limitations in range filling a priori (Svenning & Skov,

2004) as an important model assumption of SDM

hybrids, (ii) to assess how prevalent the phenomenon

of incomplete range filling is in extant species, and (iii)

to evaluate DRM predictive performance and their

ability to accurately distinguish between environmental

filtering and dispersal limitations in such situations.

Large variation in predictive performance under future
climates

All range dynamic models tested here considerably

improved climate change projections compared to

SDMs, although relative model performance differed

from those under current climates. Surprisingly, advan-

tages of DRMs in predicting current ranges did not

result in better predictions of future ranges compared

to SDM hybrids. This may result from different calibra-

tion approaches, calibration data and process detail

covered by the models. For example, the relatively poor

performance of DRMs might arise to some extent from

uncertainty in estimated dispersal rates while dispersal

kernels were known for SDM hybrids. Also, DRMs

overestimated the position of future trailing range

edges (Figs 3 and 6). This likely originates from the fact

that DRMs did not explicitly describe adult survival,

which is independent from the environment in the

IBM, but summarized all demographic processes in an

environment-dependent population growth rate. There-

fore, the transient persistence of populations when tem-

peratures have become unfavourable at the rear edge

(Fig. 2) was not accurately predicted. Consequently, the

different SDM hybrids outperformed the DRM in

almost all scenarios. Notably, also MigClim, the sim-

plest approach that only supplemented SDMs with a

dispersal kernel, showed spatial predictions that were,

on average, similarly accurate as the more complex

approaches.

The main advantage of the more complex approaches

is that they also predict population dynamics and asso-

ciated extinction risks. Both before and after climate

change simulations, DemoNiche largely overestimated

abundance, while LoLiPop and DRMs produced more

reasonable estimates. Nevertheless, the relative

decrease in abundance and associated extinction risks

were often better approximated by DemoNiche than by

the other two population dynamic models. This is likely

due to the fact that DemoNiche uses demographic

instead of abundance data for calibration, and that

DemoNiche does not restrict abundance except when

habitat suitability was related to carrying capacity.

Calibrating demographic parameters directly allows

DemoNiche to more accurately predict population tra-

jectories in many cases. In fact, calibration on abun-

dance data led to estimation of partially unrealistic

demographic rates in LoLiPop resulting in over-com-

pensatory local population dynamics (although this

could be avoided by choosing an alternative underlying

population model; Cabral & Schurr, 2010). Although

also calibrating on abundance data, this effect was not

found in DRMs, as DRMs use abundance time series

for calibration that inherently include information on

demographic trajectories.

We conclude that (i) predictions of relative change in

abundance are often more reliable than predictions of

absolute change in abundance, a feature already known

for population viability models (Beissinger & Westphal,

1998; Zurell et al., 2012b), and that (ii) data on demogra-

phy either through direct measurements or through

abundance time series are indispensible for reliably cal-

ibrating population dynamic models (Schurr et al.,

2012). Our study confirms that all calibration

approaches using demographic data and/or spatial or

temporal abundance data can generate reasonably

accurate predictions overall. However, models based

solely on spatial abundance data may exhibit high

uncertainty in future predictions and require careful

testing of model structure. A constraining point is that

accurate data on demography and spatial distribution

and abundance are not available for many species and

in high quality. Also, density is not easy to measure in

many plant communities, where biomass or relative

cover is preferentially recorded. Time series of relative

cover may show strong inter-annual variability, which

is not necessarily related to population processes (Bou-

langeat et al., 2012). Thus, we not only need to increase

our efforts in data collection but also in defining (more)

meaningful response variables for population dynamic

studies.

Effects of demographic and community processes

Generally, spatial prediction accuracies of all range

models decreased when the focal species was interact-

ing with other competitor species, especially under

short-range dispersal (Fig. 6). In contrast, the effects of

large-scale disturbances and source-sink dynamics on

model accuracy were comparably low. None of the

tested range dynamics models account for biotic inter-

actions and hence they all experienced difficulties in

these particular cases. More work is thus needed to

incorporate assembly processes in such dynamic mod-

els (Boulangeat et al., 2012; Cabral & Kreft, 2012;

Mokany et al., 2012). Therefore, caution is advised with

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2651–2664

2660 D. ZURELL et al.



these models when biotic interactions are highly

stochastic as was shown in the neutral scenarios.

Although the assumption of neutral community

dynamics is much debated for temperate ecosystems,

observed spatial distributions are often astoundingly

consistent with neutrality even if driven by different

mechanisms (Bell, 2005). Our results indicate that

whenever the ecosystem under study is strongly

affected by biotic or environmental stochasticity,

simpler range models such as MigClim may be pre-

ferred over more complex population models although

prediction of population dynamics and abundances

cannot be retrieved from such models.

We additionally stress that although predictive per-

formances of all models decreased stronger in the

short-range compared to long-range dispersal scenar-

ios, this does not imply that predictions are generally

more reliable for long-distance dispersers. Our results

need to be judged with some caution and with respect

to the virtual simulation model setup, in which all spe-

cies of the community had the same dispersal ability

and recruitment was proportional to the amount of

propagule rain. This is, of course, a simplifying

assumption and we will likely observe even more com-

plex community dynamics if species vary in dispersal

ability (Cabral & Kreft, 2012). It is, thus, reasonable to

assume that long-distance dispersers may also experi-

ence substantial migration limitation from competitors.

Uncertainty through structural decisions in range
dynamic models

Most applications of range dynamic models ignore

uncertainty in model structure and their effect on pre-

diction uncertainty (but see Cabral & Schurr, 2010).

Our results clearly show that structural decisions in

model building are crucial and may strongly affect

prediction accuracies. Range dynamic models neces-

sarily simplify the species–environment relationship as

well as the colonization and extinction processes and

these simplifying assumptions may lead to large

uncertainties (Appendix S4). Important structural deci-

sions in range dynamic models relate to differences in

the relationship between habitat suitability and demo-

graphic rates, which has hitherto little empirical sup-

port (Thuiller et al., 2010, 2014; McGill, 2012) and

should receive more attention in the future. The differ-

ent range dynamic models may strongly differ in how

variation in the environment-dependent demographic

rate drives variation in (i) local abundance or carrying

capacity, (ii) persistence, and (iii) propagule dispersal

and associated colonization success. This aspect

becomes even more important, when such models are

applied in a climate change context, where different

sources of uncertainty need to be considered in order

to make meaningful projections with sufficient atten-

tion given to the sources of uncertainties.

Such structural aspects are rarely considered in

dynamic range predictions, but we strongly advise

to do so and to assess to what degree prediction

accuracies vary under different model structures. In

DemoNiche, for example, using habitat suitability to

constrain carrying capacity led to more realistic

abundance estimates in some scenarios, but caused

higher uncertainty and erroneous predictions of extinc-

tion in other scenarios. Constraining vital rates seemed

more robust in that respect, but only if appropriate vital

rates were selected according to prior knowledge of the

species’ ecology. Overall, we found that the Demo-

Niche configurations that achieved highest accuracy

under equilibrium conditions usually remained among

the best during climate change as well. Accordingly,

the best model configurations under current climate

could be used for making consensus forecasts. Alterna-

tively, approximate Bayesian computation might be

employed to optimize the structural link between the

habitat suitability and demography in SDM hybrids

given the data (Hartig et al., 2011). This idea is similar

to the information criterion based approach used by

Cabral & Schurr (2010) in LoLiPop in order to select

among different underlying population models includ-

ing or not Allee effects and overlapping generations.

Notably, the environment-demography relationships in

LoLiPop and DRMs, in particular more differentiated

environmental responses of different demographic pro-

cesses, should also be explored more thoroughly in the

future, although such assessment will require larger

computational efforts. Nevertheless, we want to stress

that the underlying idea of DRMs of jointly estimating

the different constraints on the niche, namely environ-

mental limitation, population dynamics and dispersal,

is better integrated with ecological theory than hybrid

approaches (for discussion see Schurr et al., 2012).

Limitations and extensions

Clearly, even a model intercomparison using simu-

lated data can by no means be exhaustive (Zurell

et al., 2010). Our choice of assembly processes, disper-

sal and other demographic processes, and landscape

structure represents only one possible implementation

and is still highly simplified in many aspects. Never-

theless, such approach allowed for generating consis-

tent benchmarking data, producing an array of

important demographic and community processes

that are known to affect species’ range limits. There-

fore our results provide insight into comparative

model performance in a wide subset of potential
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cases. Clearly, subsequent comparison on field data

and evaluation of other complicating factors such as

sampling effort or bias, unequal dispersal abilities and

unequal competitive ability of heterospecifics among

others will be additionally informative. Also, the

robustness of range dynamic models under novel

environments (Williams & Jackson, 2007; Zurell et al.,

2012a), changing collinearity structures in environ-

mental predictors (Dormann et al., 2013) or arbitrary

scale decisions (Thuiller et al., 2015) should be tested

in the future.

Moreover, although we aimed for a representative

selection of current modelling frameworks for predict-

ing range dynamics and actual abundance (Ehrl�en &

Morris, 2015), our study could only include a subset of

available software applications. Lurgi et al. (2015) pro-

vide an extensive review on available computer plat-

forms for predicting population- or individual-based

range dynamics, which vary in the accommodated

detail of demographic processes and complexity in spe-

cies’ lifecycles. In comparison to some other platforms,

for example RAMAS (Akc�akaya, 2000) that has been

used rather widely in conservation context (cf. Ford-

ham et al., 2013) and more recently also for predicting

range dynamics (e.g., Keith et al., 2008; Anderson et al.,

2009; Pearson et al., 2014; Swab et al., 2015), Demo-

Niche, as our example of a stage-structured matrix pop-

ulation model, allows only a relatively low level of

complexity in the species’ modelled life history. As the

life cycle of the simulated species was likewise simple,

this is unlikely to have limited the performance in our

model. However, for other applications that demand a

higher level of detail in the species’ life cycle or in envi-

ronmental drivers, other approaches, such as RAMAS,

might be preferable (Lurgi et al., 2015).

Summary

Our range dynamic model intercomparison yielded no

clear winners or losers. While all range dynamic mod-

els show clear benefits over simple SDMs, we cannot

provide simple suggestions which model framework to

choose for any single application. Currently, model

choice will depend to a large extent on data availability

and on prior knowledge on species’ ecology (Lurgi

et al., 2015). For example, we currently lack spatiotem-

poral abundance data or solid demographic informa-

tion for many taxa, which clearly limits model choice.

As far as possible given data limitation, we generally

advise a comparison of predictions from multiple mod-

els for improved understanding of model behaviour

and prediction uncertainty (Cheaib et al., 2012).

Thereby, great discrepancies between model predic-

tions may indicate that we missed important ecological

mechanisms. More efforts are needed to better under-

stand the underlying mechanisms and its calibration in

range dynamic models. This is specifically true for the

interplay between demographic rates and biotic inter-

actions in communities. Also, uncertainty through

structural decisions should be assessed more routinely,

and important model assumptions of range models

should be verified a priori, for example the degree of

range filling. Clearly, broader application of range

dynamic models is limited by data and by computa-

tional efforts. Computation times are still quite high for

DRMs compared to SDM hybrids. However, data avail-

ability is more crucial. We have shown that different

kinds of calibration data (abundance, demographic

rates) can be utilized, and that also SDM hybrids can be

calibrated in a (semi-) automated way. Still, more

efforts should be given to collecting longer-term and

large-scale data on abundance and demography. Only

such consistent data basis can ensure wide application

of range dynamic models for climate impact assess-

ment. Future studies should further focus on evaluating

the effects of sampling effort and sampling bias, and of

other complicating processes such as asymmetric com-

petition or niche evolution on prediction accuracy of

range dynamic models.
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