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Abstract

Predictions of species-level extinction risk from climate change are mostly based on species
distribution models (SDMs). Reviewing the literature, we summarise why the translation of
SDM results to extinction risk is conceptually and methodologically challenged and why critical
SDM assumptions are unlikely to be met under climate change. Published SDM-derived
extinction estimates are based on a positive relationship between range size decline and
extinction risk, which empirically is not well understood. Importantly, the classification criteria
used by the IUCN Red List of Threatened Species were not meant for this purpose and are often
misused. Future predictive studies would profit considerably from a better understanding of the
extinction risk–range decline relationship, particularly regarding the persistence and non-
random distribution of the few last individuals in dwindling populations. Nevertheless, in the
face of the ongoing climate and biodiversity crises, there is a high demand for predictions of
future extinction risks. Despite prevailing challenges, we agree that SDMs currently provide the
most accessible method to assess climate-related extinction risk across multiple species. We
summarise current good practice in how SDMs can serve to classify species into IUCN extinction
risk categories and predict whether a species is likely to become threatened under future climate.
However, the uncertainties associated with translating predicted range declines into quantitative
extinction risk need to be adequately communicated and extinction predictions should only be
attempted with carefully conducted SDMs that openly communicate the limitations and
uncertainty.

Impact statement

Extinction is the irreversible loss of unique life forms. Ongoing climate change is predicted to
cause significant loss of biodiversity, meaning loss of species, genes and ecosystems. This could
lead to multiple negative consequences for human society as important ecosystem functions are
also being lost. Understanding and predicting species extinctions for scenarios of future climate
change is thus of main interest for science and people. Most estimates of future extinction risk
rely on correlative species distribution models (SDMs). These relate the observed distribution of
the focal species to observed environmental characteristics and then make forecasts where the
species will find suitable environmental conditions in the future. We summarise how these
models can be used to predict extinctions and what are the challenges and limitations of this
approach. For example, these models ignore how long it might take until species go extinct after
the loss of their habitat. Many processes and factors determining the loss of the few last
individuals of a species are currently not well understood, and we highlight where particular
caremust be taken in themodel building steps and where more detailed investigations into these
processes are needed to improve predictions of species extinction risks. Despite prevailing
challenges, there is high demand for estimates of future extinction risk. Overall, SDMs currently
provide the most accessible method to estimate climate-related extinctions across multiple
species, and those predictions, although uncertain, are needed by society to prepare adaptive
strategies and policies for mitigating the consequences of human-induced climate change.

Introduction

Species distribution models (SDMs) are the main source to estimate the magnitude of climate
change-related species extinctions (Urban, 2015; Warren et al., 2018), although inferring
extinction risks from SDMs is controversial (Hampe, 2004; Dormann, 2007; Araújo and

Cambridge Prisms: Extinction

www.cambridge.org/ext

Review

Cite this article: Zurell D, Fritz SA, Rönnfeldt A
and Steinbauer MJ (2023). Predicting
extinctions with species distribution models.
Cambridge Prisms: Extinction, 1, e8, 1–10
https://doi.org/10.1017/ext.2023.5

Received: 21 October 2022
Revised: 18 January 2023
Accepted: 08 February 2023

Keywords:
biodiversity loss; climate change; distribution;
habitat loss; scenarios and forecasts

Author for correspondence:
Damaris Zurell,
Email: damaris@zurell.de

© The Author(s), 2023. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/ext.2023.5 Published online by Cambridge University Press

https://orcid.org/0000-0002-4628-3558
https://orcid.org/0000-0002-4085-636X
https://orcid.org/0000-0002-7142-9272
https://doi.org/10.1017/ext.2023.5
mailto:damaris@zurell.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/ext.2023.5


Peterson, 2012). Currently, SDMs are themost widely used tools for
assessing climate change impacts on biodiversity (Araújo et al.,
2019) and for evaluating current and future ranges of species (e.g.,
Thomas et al., 2004). Many SDM studies have attempted forecasts
under climate scenarios, for example, assessing climate change
vulnerability of species in terms of potential range loss (e.g., Zhang
et al., 2015; Martín-Vélez and Abellán, 2022), differences in sea-
sonal range loss for species with different IUCN Red List status
(Zurell et al., 2018) or contrasting effects of dispersal or local
adaptation on climate-related extinction risk (Thuiller et al.,
2006; Román-Palacios and Wiens, 2020). Also, SDM-derived
extinction risk estimates regularly inform political processes
(IPCC, 2022, Chapter 2.5).

Despite the widespread use of SDMs in climate change research,
they also remain criticised and regularly spark debate (Dormann
et al., 2012; Thuiller et al., 2013). For example, when Thomas et al.
(2004) inferred global estimates of extinction risks across plants and
animals by synthesising studies that applied SDMs under future
climate change scenarios, their results were criticised in several
commentaries (Buckley and Roughgarden, 2004; Thuiller et al.,
2004). Main criticisms referred to conceptual challenges related
to how SDM predictions relate (or not) to extinction risk of species,
to underlying SDM assumptions and to methodological challenges.
Still, the number of SDM applications, also in relation to global
change, is constantly increasing (Araújo et al., 2019) and meta-
analyses indicated that of all studies that estimate extinction risk
under future climate, 76% are based on SDMs (Urban, 2015). In the
absence of better-suited alternative methods to estimate climate
change-related extinction risk, SDMs seem to remain the most
practical methodology despite well-founded criticism. In this
review, we first explain the basics of SDMs and provide a literature
overview over the use of SDMs for quantifying climate change
impacts and extinction risk. Then, we describe how SDMs are
currently used to inform extinction risk estimates and discuss the

contentions from conceptual and methodological viewpoints.
Finally, we summarise current good practice.

What are species distribution models?

Correlative SDMs (a.k.a. habitat suitability model, ecological niche
model and environmental envelope model, among others; Elith and
Leathwick, 2009) relate geographic occurrences of organisms to
prevailing environmental conditions (abiotic, biotic or both) within
a statistical or machine-learning framework (Guisan and Zimmer-
mann, 2000; Guisan and Thuiller, 2005). The inferred model
describes the species–environment relationship informing how
habitat suitability scales with different environmental predictors.
This relationship can be projected into geographic space using layers
of environmental predictors to predict suitable habitat under cur-
rent environment or scenarios of future (or past) environments
(Figure 1). In many cases, SDMs are fit to climatic predictors,
especially when predicting future scenarios. When prediction is
the goal, predictive accuracy and transferability to new times and
places should be validated, which is not trivial as independent data
are often missing (Araújo et al., 2005; Yates et al., 2018; Zurell et al.,
2020). By applying a threshold approach (Liu et al., 2005, 2013), the
model output of habitat suitability can be transformed into pre-
dicted presence (and predicted absence), which can be interpreted as
potential distribution of the species given the environmental con-
ditions. The realised distribution of the species might deviate from
the predicted potential distribution because of underlying ecological
processes and methodological challenges (Figure 1; Soberón, 2007;
Elith and Leathwick, 2009), which we will further discuss below.

Recent years have seen considerable advances in SDM algo-
rithms and accompanying methods for fitting SDMs (Valavi et al.,
2021). Also, digital availability of biodiversity data and environ-
mental data including climate scenarios has increased strongly
(Wüest et al., 2020). These factors have contributed to widespread

Figure 1.Conceptual overview of correlative species distributionmodels (SDMs) used for prediction under climate change. SDMs are fitted to observed occurrence data and climatic
(or, more generally, environmental) data in time step t1 (upper row of figures) using adequate statistical and machine-learning approaches (top-right plot shows two example
approaches as grey curve and blue step function). The fitted species–environment relationship is then used to make predictions of habitat suitability and potential distribution at
time step tx given future climate (or environmental) layers (lower rowof figures). The potential future distribution derived fromSDMs can differ from the true distribution at time step
tx as the latter will be co-determined by the biological processes of dispersal, demography, species interactions and genetic or behavioural adaptation leading to transient dynamics
(small figures in the middle).
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use of SDM techniques. To quantify how many SDM-related
studies exist and how many of these target climate change and
species extinctions, we conducted a keyword-based literature
search in the Web of Science on 21 July 2022 for papers published
in 1900–2021 (see Table 1 for list of keywords). First, we identified
all studies that mention SDMs (or synonyms). This revealed more
than 40,000 studies published over all disciplines, with the first
SDM mention in 1969 and a steady increase since 1990 (Figure 2).
We then refined the list of papers by adding keywords related to
climate change (Table 1). Of all SDM studies, climate change was
mentioned in c. 20% and with increasing frequency through time
(Figure 2C). Finally, we further refined the list of papers by adding
keywords related to extinction or population declines (Table 1).
Interestingly, extinction wasmentioned only in one study related to
SDMs and climate change before 2002. Since then, the absolute
number of climate change-related SDM studies mentioning extinc-
tion increased, culminating in 171 such studies published in 2021.
Yet their relative proportion decreased over time (average propor-
tion c. 18%; Figure 2C).

As this simple keyword search could provide an overoptimistic
number of hits, we assessed a randomly drawn subset of 300 pub-
lications from the final set of articles that mentioned SDMs, climate
change and extinction in more detail (see the Supplementary
Material). All articles were screened by the same assessor, first
screening the abstracts for determining whether the study applied
SDMs and then screening the entire article for inclusion of climate
change scenarios and quantitative estimates of extinction risks. Of
the 300 articles, 203 publications indeed used SDMs, 161 applied
SDMs under climate scenarios (150 under future scenarios and
11 under historic scenarios), 134 quantified future climate-related
range changes from SDMs and 74 of these studies implied or
provided inference on extinction risk (see the Supplementary
Material). Thus, while the large majority of SDM studies do not
explicitly aim at predicting extinctions, SDMs are clearly used for
deriving species’ extinction risk under climate change. In fact, most
extinction risk estimates reported in the IPCC AR6 are based on
SDMs (IPCC, 2022, pp. 256–261).

How is extinction risk derived from species distribution
models?

SDMs can predict climatically suitable areas (or, more generally,
environmentally suitable areas). An assumed increase in extinction

risk with the decline in suitable habitat underlies most estimates of
extinction risks from SDMs. They reflect theoretical understanding
from island biogeography that smaller areas can harbour less
individuals and smaller populations face a higher risk of extinction
(species–area relationship [SAR]; MacArthur and Wilson, 1967).
While generally accepted, the precise relationships between range
size decline, population decline and extinction probability are
unknown for most species (reviewed in Mace et al., 2008). Often,
guidelines from the extinction risk classification formalised by the
IUCN Red List of Threatened Species (IUCN, 2001, 2022) are used
for translating SDM-derived estimates of range-size declines to
extinction probabilities (e.g., Ahmadi et al., 2019; IPCC, 2022),
while this simplified translation lacks empirical evidence
(Akçakaya et al., 2006). Originally, the IUCN “categories of threat
[…] provide an assessment of the likelihood that […] the species
will go extinct within a given period of time” (Mace and Lande,
1991). Based on quantitative analyses such as a population viability
analysis (PVA), species are, for example, classified as “critically
endangered”when they face a >50% likelihood of extinction within
the coming 10–100 years (depending on generation times), and
“endangered” with a likelihood of extinction of >20% (criterion E;
IUCN, 2001, 2022). However, due to insufficient or uncertain
training data for PVA models, extinction probability estimates
based on quantitative population viability analyses are missing
for most species.

As alternative to quantitative analysis (criterion E), simpler
estimates of species range decline can be used in the IUCN frame-
work, for example, to classify a species as “critically endangered” or
“endangered” if it is predicted to lose ≥80% or ≥50% of its range,
respectively, over the longer of 10 years or three generations (sub-
criteria A3 and A4). Criterion A was devised for observed popula-
tion decline, but it is now also applied to SDM-derived estimates of
future range size declines (Mace et al., 2008; IUCN, 2022). How-
ever, it is important to note that while the IUCN allows using a
future decline of range size (subcriteria A3 and A4) or an extinction
probability estimate (criterion E) for classifying species into the
same extinction risk category with well-funded arguments, this
does not mean that a certain decline in range size can be translated
into a specific quantitative extinction risk (Akçakaya et al., 2006;
Mace et al., 2008). Accordingly, the IUCN Red List guidelines state
that “the risk-based thresholds of criterion E should not be used to
infer an extinction risk for a taxon assessed […] under any of the
criteria A to D00 (IUCN, 2022, p. 62). To illustrate this, a projected
range loss of ≥80% may be used to classify a species as “critically
endangered” (according to subcriteria A3 andA4), but this does not
mean that its probability to go extinct within three generations is
larger than 50% only because the latter would also be a valid
criterion for being classified as “critically endangered” (according
to criterion E). Yet such a use of SDM-based range changes paired
with IUCN criteria for extinction risk assessment is also –mislead-
ingly – stated in the latest IPCC report (IPCC, 2022, p. 257), where
central quantifications of extinction risks in IPCCAR6 are based on
this approach (Warren et al., 2018). Here, we want to echo Akça-
kaya et al. (2006) and Mace et al. (2008) and caution against such
interpretation.

When using SDMs to project extinctions, a better understanding
of the relationship between range-size or abundance declines and
extinction risk is thus central. Recent meta-analyses came to mixed
conclusions on whether habitat suitability is a reasonable proxy of
abundance (Weber et al., 2017; Lee-Yaw et al., 2022). This relation-
ship of suitable habitat and extinction risk is likely dependent on
species-specific characteristics (e.g., life-history strategy and

Table 1. Web of Science search terms used in the literature search on 21 July
2022

Topic Search terms

Species
distribution
model

TS = (“species distribut*” OR “habitat distribut*" OR
“climat* envelope” OR bioclimat* OR “habitat
suitab*” OR niche OR “resource selection” OR SDM
OR ENM OR BEM OR BCM OR HSM OR RSF) AND
(model*)

Climate change TS = (“climat* change”)

Extinction TS = (“extinct*” OR “pop* declin*”)

Time period PY = (1900–2021)

Document types Article

Languages English

Web of Science
index

Science Citation Index Expanded (SCI-EXPANDED) –
1900 to the present
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generation times). Most importantly, the relationship between
population size and habitat (suitable area) may not be linear
(Blackburn et al., 2006). In fact, SDMs only predict the potential
distribution, while demographic and ecological processes and ran-
dom events may prevent the species from occupying all suitable
habitat (Figure 1). Here, the debate on whether SDMs capture
fundamental or realised niches is relevant (e.g., Soberón, 2007;
Holt, 2009).

On a conceptual level, the process of extinction is very hard to
quantify with anymethod. An alternative method to predict extinc-
tion under future climate change relies on SARs, that is, on strong
empirical evidence for ubiquitous relationships between species
richness and geographical area size (Matthews et al., 2021). These
SARs can be utilised to predict changes in species richness given
projected changes in area, for example, in the geographic extent of a
given habitat under climate change (Pimm et al., 1995). However,
this approach has been criticised because empirical SARs depend
on species and environmental characteristics (Matias et al., 2014;
Schrader et al., 2020), because extinctionmay often lag substantially
behind habitat loss (Triantis et al., 2010), but most importantly
because methods to construct a SAR are unable to adequately
integrate the distribution of last individuals and to differentiate
underlying sampling problems from the actual loss of these last
individuals (He and Hubbell, 2011, 2013; Kitzes and Harte, 2014).
Further, the method is not species-specific but relies on defining
relevant areas where habitat will be lost, as the amount of lost area is
used to predict species richness (rather than extinction probability
for individual species). SARs are thus better suited to deal with land
use-related habitat loss rather than climate change-related extinc-
tion, and they cannot be used to inform about the risk of single
species that would be relevant for conservation.

In summary, SDMs currently provide the most workable,
species-specific prediction tool for threat classification under cli-
mate change, but should be used with caution. The translation of a

decline in range size as projected by SDMs into quantitative extinc-
tion risk estimates (as by the IUCN criterion E) is fraught with
difficulty, because the basic underlying extinction–range decline
relationship is unclear, and likely to differ among taxa and envir-
onments. However, in the absence of more appropriate methods,
careful application of IUCN criteria to SDM projections allows
categorising species-level extinction risk from future climate
change under specific assumptions. In the following two sections,
we review conceptual and methodological challenges of SDMs that
are particularly relevant to this process.

Conceptual challenges

Using SDMs for making predictions about future extinctions
hinges on the expectation that these models make reliable predic-
tions into the future. There are several reasons why this is not
necessarily true. SDMs make several critical assumptions when
applied to global change scenarios, most importantly that species
are in equilibrium with current environment and will achieve
(instantaneous) new equilibrium in the future, and that all envir-
onmental constraints are adequately understood and considered in
the model (Elith and Leathwick, 2009; Zurell et al., 2020). Here, we
discuss why these critical assumptions are unlikely to be met in
many cases. In addition, SDMs assume that species will conserve
their niches into the future, for example, that no change in the
species–environment relationship will occur through adaptive evo-
lution of thermal tolerance, which is probably unlikely given strong
selective pressure (Dawson et al., 2011; Buckley and Kingsolver,
2012).

There is increasing evidence that range-shifting species are
lagging behind their climatically suitable habitat (Svenning et al.,
2008), leading to suitable habitat not yet colonised (“colonisation
credit”) and indicating departure from the equilibrium assumption
underlying SDMs. Impacts fromother global change drivers such as

Figure 2. Use of correlative species distribution models (SDMs) over the last three decades. We extracted all studies from the Web of Science (see the keywords in Table 1) between
1900 and 2021 and classified them according to whether they were used in a climate change context and whether they mentioned extinctions or population declines. Earliest SDM
studies appeared in 1969 with one to three publications per year until 1985. For easier visualisation, we only show publications published after 1985. (A) shows the absolute number
of SDM publications per year. (B) shows the absolute number of SDM publications thatmention climate change (CC) and those thatmention both CC and extinctions (Ext). (C) shows
the proportion of different SDM studies per year: green indicates the proportion of all SDM studies per year that mention climate change and purple indicates the proportion of all
climate change-related SDM studies per year that mention extinction or population decline.
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habitat destruction and land fragmentation can prevent a species
from tracking suitable climate, leading to a much higher extinction
risk than can be suggested by an SDM (Travis, 2003; Hof et al.,
2011). The dispersal ability of a species will (co-)determine the
climate tracking ability, yet reliable empirical estimates are largely
missing (Bullock et al., 2017; Fandos et al., 2023). When comparing
potential current and potential future distribution, SDMs often
assume full dispersal or no dispersal (Thuiller et al., 2019). In the
first case, we assume that species fully track the changing climate in
space. In the second case, we assume that species are not at all
shifting their range but simply lose currently suitable climate area.
Inference of range size declines can dramatically differ between
these extreme assumptions and are also strongly influenced by the
geography of the study area (Figure 3). Additionally, climate track-
ing and range shifting can be affected by demographic processes,
adaptive evolution and species interactions (Buckley and King-
solver, 2012; Svenning et al., 2014; IPBES, 2016; Schleuning et al.,
2020). For example, the presence of competitors, generalist con-
sumers or predators can slow down range expansion (Davis et al.,
1998). At the same time, long life expectancy of species can result in
(temporary) survival under unfavourable conditions and delayed
local extirpations (extinction debts; Kuussaari et al., 2009). To some
extent, these violations of the equilibrium assumption can be
captured by the two extremes of full versus no dispersal scenarios.
Yet it is highly uncertain towards which of these extreme assump-
tions a specific species will lean. Therefore, the IUCN (2022)
recommends to derive and overlap future SDM predictions at
one-generation intervals to assess climate-tracking potential.
Ideally, this should be coupled with reasonable assumptions about
potential spread of species in the face of the above-mentioned
processes.

It is almost impossible to incorporate all relevant environmental
constraints into SDMs or project these into the future, even though
this is a core assumption underlying SDMmethodology. Ecological
processes are highly scale-dependent. Climatic conditions may
govern the broad-scale species distribution, while the fine-scale
distribution may be determined by local resources (Guisan and
Thuiller, 2005) ormicroclimate (Suggitt et al., 2011). Consequently,
climate niche tracking and range shifting may ultimately be limited
by fine-scale resource distributions (Skov and Svenning, 2004;
Dormann, 2007; Suggitt et al., 2018). Particularly among plants,
facilitative effects of other species may strongly influence habitat
suitability under unfavourable conditions (like nurse plants in
alpine or dry environments; Steinbauer et al., 2016; Gallien et al.,
2018). Not considering these fine-scale environmental or biotic
predictors in SDMs may bias predictions, and lead to under- or
over-estimation of suitable habitat. Additionally, predictions into
the future require availability of environmental scenarios. Climate
models are well advanced, and the climate science community
produces regular updates on climate scenarios for the IPCC
(Knutti et al., 2013). For land use, which is another major deter-
minant of species distribution, future scenarios are less well devel-
oped and more uncertain due to unknown political and economic
development (Cabral et al., 2022).

A further challenge arising with future predictions is unidenti-
fied constraints in species distributions. Environmental or land use
factors that constrain the distribution of a species can only become
apparent as effective predictors in SDMs if they limit the current
distribution of a species. If, for instance, soil characteristics are
largely suitable within the current range of a species that is currently
constrained by climatic factors, an SDM will not identify soil as a
relevant predictor variable and will be unable to identify that a

Figure 3. Shape of the study area as well as dispersal assumptions influence predictions of correlative species distribution models (SDMs). This is shown here for theoretical
continents characterised solely by a linear gradual decrease of temperature to the upper part of the study area. We assume that each temperature band is occupied by one
hypothetical species. In the future, temperature isoclines will move upwards on the shown study areas (imitating global warming; sketchmaps on the left). Under the full-dispersal
assumption, species will fully track their suitable temperature band. Under the no-dispersal scenario, species will lose climatically suitable area but will not shift their range. These
two extremes reflect themost common dispersal assumptions in SDM-based projections under climate change. Extinction risk estimates derived fromSDMs strongly depend on the
geographical shape of the study area, and the dispersal assumption (bar charts on the right showing relative area change for each species). Fun fact: the continent map in (D) is a
rough representation of the area–latitude relationship of western Europe.
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projected future range may be largely uninhabitable due to unsuit-
able soil conditions. Particularly, edaphic variation is a major
determinant of plant distributions (Hulshof and Spasojevic, 2020)
but is often neglected in SDMs, possibly because soil characteristics
on macroscales correlate with climate (e.g., along latitude; Huston,
2012). In fact, the identification of relevant variables only based on
explanatory power may be very misleading, as random spatial
variables may be able to predict spatial distribution pattern as well
as commonly used environmental predictors (Fourcade et al.,
2018). As SDMs are phenomenological models, it is important
not to mistake correlation for causation (Dormann et al., 2012).
Also, phenomenological relationships might not hold in the future
if species adapt to novel abiotic and biotic conditions.

Methodological challenges

When using models to estimate extinction risks and to inform
management and provide policy support, it is important that
models are fit for this particular purpose. This may be challenged
by conceptual problems, as discussed above, and bymethodological
challenges, for which we give a brief overview here. Although SDMs
are commonly perceived as a simple method, only few studies
achieve quality standards that will match the standards specified
by the IUCN for extinction risk assessment (IUCN, 2022). Several
recent papers provide guidance and propose best-practice stand-
ards for ensuring SDM credibility for decision-making and bio-
diversity assessment (Araújo et al., 2019; Sofaer et al., 2019).
Nogués-Bravo (2009) discussed how SDMs can be used to predict
past distributions of species’ climate niches and derived a set of
recommended practices for hindcasting, arguing that inadequate
methods can lead to “a cascade of errors and naïve ecological and

evolutionary inferences” (Nogués-Bravo, 2009). Although focused
on hindcasts, the identified methodological challenges also apply to
forecasting SDMs as a basis for estimating extinction risk. We
summarise these below as (1) model specification, (2) selection of
environmental predictors, (3) model validation and (4) uncertainty
through non-analogue climates (Barry and Elith, 2006; Nogués-
Bravo, 2009; IUCN, 2022; Figure 4A).

(1) Several studies have shown that algorithmic choices can
strongly affect current and future range predictions (Buisson
et al., 2010; Thuiller et al., 2019). Algorithms range from simple
profile or envelope methods, regression-based approaches to
complex machine-learning methods (Guisan et al., 2017).
Machine-learning methods derive complex species–environment
relationships that closely fit the observed data and have often been
reported to achieve highest prediction accuracy (Elith et al., 2006;
Valavi et al., 2021). Yet overfitting might also lead to reduced
transferability to new times and places, and simpler models might
thus be preferable for predicting future species ranges and extinc-
tion risk (Merow et al., 2014; Brun et al., 2020). For making
biodiversity predictions under scenarios of climate change, the
IUCN advises to use at least three different SDM algorithms of
intermediate complexity to capture the uncertainty related to spe-
cies–environment relationships (IUCN, 2022). (2) Similarly, the
number of predictor variables included in a model should be kept
reasonably small when predicting into the future (Brun et al., 2020).
Also, uncertainty in available environmental data should be con-
sidered, for example, when alternative data sources are available. As
SDMs are increasingly used in global change research, the question
of transferability also becomes more urgent (Yates et al., 2018).
(3) Due to a lack of independent test data, validation is typically
done based on data partitioning (Araújo et al., 2005). Newest

Figure 4. Workflow and challenges for deriving adequate range loss predictions from correlative species distribution models (SDMs) and subsequent estimates of extinction risk.
(A) Several methodological and conceptual challenges should be considered in SDM development, and resulting uncertainty should be adequately communicated. Current best
practices for achieving or assessingmodel credibility are summarised in Araújo et al. (2019) and Sofaer et al. (2019). (B)While predicted range loss can be readily translated into IUCN
Red List categories for threatened species following the IUCN Red List guidelines (IUCN, 2022), the IUCN advices against deriving quantitative extinction risk estimates from SDM
predictions. At the very least, further research is required regarding adequate extinction–range loss relationships and adequate uncertainty propagation (IUCN Red List categories:
CR, critically endangered; EN, endangered; VU, vulnerable).
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developments in model validation now advocate for spatial or
environmental block cross-validation approaches that strategically
hold out data that are spatially or environmentally clustered, and by
this force extrapolation during validation (Bagchi et al., 2013;
Roberts et al., 2017; Valavi et al., 2019). Although an important
step forward for assessing prediction uncertainty, we are still miss-
ing clear guidance about adequate block design to ensure robust
estimates of prediction accuracy of future ranges. Validation of
prediction accuracy into the future is further complicated by the
fact that global change could lead to non-stationarity in the pro-
cesses that govern the inferred species–environmental relationship
(Rollinson et al., 2021), potentially violating the assumption of
niche constancy. (4) Lastly, when making predictions to the future,
we also need to consider uncertainty through extrapolating to novel
environments. Different algorithms will exhibit different extrapo-
lation behaviour and it is thus advisable to explicitly assess envir-
onmental novelty (Elith et al., 2010; Zurell et al., 2012). The IUCN
(2022) lists several of these methodological issues that need to be
considered and communicated to include SDM results and predic-
tions in Red List assessments, andwe highly recommend consulting
these guidelines when planning studies estimating extinction risk
(Figure 4A). Best practices for achieving or assessing model cred-
ibility are also summarised in Araújo et al. (2019) and Sofaer et al.
(2019).

Moving forward: Predicting uncertainty is better than
wrong predictions

While the outlined conceptual andmethodological challenges illus-
trate why using SDMs for predicting extinction risk is potentially
problematic, SDMs are still the most widely applicable tool cur-
rently available for predicting species’ potential future distributions
under climate change. Our survey of SDM-related challenges also
highlights crucial future research questions that need to be
addressed to improve the use of SDMs for predictions of extinction
risk from climate change (Figure 4B). In particular, improved
understanding of the relationship between species’ extinction prob-
ability and (SDM-derived) range decline is of central importance
for more robust predictions. Particularly, the non-random distri-
bution and extinction probability of species that have declined to
very small population sizes are not well understood and pose
the largest uncertainty when estimating extinction probabilities.
In the absence of clearly identifiable climate-related extinctions
over the last centuries, science cannot build on empirical evidence
when assessing climate change-related extinction risk, at least not in
the recent past. In fact, until now, only two global species extinc-
tions in modern times can be attributed with confidence to human-
induced climate change (IPCC, 2022, p. 237). This absence of
observed climate-related extinctions does not contrast with model
predictions, but it limits our current understanding of extinction
processes and constraints testing the precision of predictive models
(Brook et al., 2008). The most promising ways forward for a better
understanding of the extinction–range loss relationship may thus
be the investigation of local extirpation patterns, of spatially explicit
simulations, and, above all, of the rich information on past biotic
responses to climate changes provided by the fossil record (Calosi
et al., 2019; Fordham et al., 2020).

A second area of future research relates back to critical meth-
odological issues of SDMs. In many studies, species with very small
range size (or a low number of occurrences) are excluded, because
SDMs need a certain number of data points, yet these highly
endemic species are among the most relevant for conservation

(Lomba et al., 2010; Breiner et al., 2018). As rarity could have
several reasons and relate, for example, to a narrow niche or to
climatic rarity (Ohlemüller, 2011), the extinction risk–range loss
relationship might even be different for species that have evolved to
occur in small areas or at low populations size compared with
species that are forced to do so. Also, little consensus exists yet
regarding adequate assumptions for considering potential future
spread in SDM predictions. Many researchers have called for
integrating more process detail into distribution models to account
for relevant transient dynamics under global change (Figure 1;
IPBES, 2016). Yet, until such process-based models are available
for large numbers of species, an intermediate solution could be to
agree on standards for incorporating reasonable assumptions about
species spread (mediated by dispersal, demography, and species
interactions, among other processes) into predictions of range
changes.

In the face of the climate and biodiversity crises, there is a clear
demand of future extinction risk estimates (IPCC, 2022). Thus,
while advancing on central research questions related to improve
our fundamental understanding of extinction processes, we advo-
cate that well-conducted SDMs should initially fill the knowledge
gap and make predictions on extinction risk – but only when
following good practice and when openly communicating the
limitations and uncertainty (Araújo et al., 2019; Feng et al.,
2019; Zurell et al., 2020; IUCN, 2022). Particularly, SDMs used
for estimating future extinction risk must be used with caution
and constructed with care, and the application of IUCN Red List
criteria to SDM results must follow the published guidelines.
According to these, predicted range size declines from well-
constructed SDMs can readily be used to classify a species as
threatened from climate change. In contrast, it is seen as prob-
lematic to back-infer quantitative extinction risks from this clas-
sification, yet this is currently being done in policy-relevant
reports such as IPCC (2022). We thus suggest as middle ground
that the uncertainties associated with translating range declines
into quantitative extinctions risks should be more adequately
communicated while at the same time increasing research efforts
to better understand the extinction risk–range decline relation-
ship (Figure 4). In addition, we need to acknowledge that SDMs
will only provide predictions of suitable area while ignoring other
relevant processes affecting range shifts and extinction. It is thus
important that we also assess uncertainty in model predictions
induced by alternative assumptions about the climate-tracking
potential of species, for example, through phenotypic plasticity,
local genetic adaptation or variability in dispersal. We follow
recent publications in arguing that the SDM community is largely
aware of these issues and has developed improved standards
(Araújo et al., 2019; Feng et al., 2019; Sofaer et al., 2019; Zurell
et al., 2020) that will allow future studies to address methodo-
logical issues and handle conceptual issues carefully.
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