model building and analyses, and thus represents a quick guide and generic work ow for modern SDMs. Second, it introd
a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitat
peer review and expert evaluation of model quality, as well as meta-analyses. We detail all elements of ODMAP, and e
how it can be used for di erent model objectives and applications, and how it complements e orts to store associated metze
and de ne modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide
interactive web-based application to facilitate its use. We plan to advance ODMAP by encouraging its further re nement.
adoption by the scienti c community.

Keywords: biodiversity assessment, ecological niche model, habitat suitability model, reproducibility, Shiny, transparenc

Introduction observed presences, and sometimes absences/non-detections,
or measured counts) with the abiotic and/or biotic eharac
Modelling species’ environmental requirements and mapstics at those locations (following Elith and Leathwick
ping their distributions through space and time constit@09). Common terms used synonymously for SDMs
important aspects of many biological analyses, particubariglosely related models include ecological niche models
in support of conservation and management interv@ENM), species range models, environmental or climate
tions (Franklin 2010). Species distribution models (SDMs)elopes, habitat suitability and habitat distribution models,
represent a set of popular techniques for interpolating @aipancy models, resource selection functions, abundance
extrapolating species distributions based on quantitathce N-mixture models. Often, these names emphasise dif
or rule-based models, with several review papers (Fraieként aspects of the entities being modelled: the niche, the
1995, Guisan and Zimmermann 2000, Guisan and uilledistribution or the habitat preferences of species, or the data
2005, Elith and Leathwick 2009) and textbooks descriktyyge used (Elith and Leathwick 2009, Peterson and Soberén
their application in detail (Franklin 2010, Peterson et 2012, Guisan et al. 2017).
2011, Guisan et al. 2017). e number of studies employ Generally, information on both the data and methods
ing SDMs has increased tremendously over recent denaddsshould be provided in su cient detail to allow anyone
(Sequeira et al. 2018, Araujo et al. 2019), witB00 pub to reproduce the ndings of a given study — provided data
lications related to SDMs being released every year (Petmesa@bso available — and to maximise transparency and allow
and Sober6n 2012), including many receivid®00 cita robust quality control (Feng et al. 2019, Merow et al. 2019).
tions each (Barbosa and Schneck 2015). Today, SDMs Prassparency and reproducibility are especially important for
ent the most widely used modelling tool for forecastingdels intended as quantitative tools for ecological impact
global change impacts on biodiversity (Guisan et al. 2@53gssments, conservation planning and decision making,
Ehrlén and Morris 2015, Ferrier et al. 2016). is boom irand biodiversity analyses (Golding et al. 2018, Araujo et al.
SDM studies is likely related to the increasing availabilitgaif9, Rapacciuolo 2019). Key to this is communicatinrg su
digital data (Jetz et al. 2012, Franklin et al. 2017, Wiiest etiaht detail about the input data, the model implementation,
2020) and easy-to-use software packages (Phillips d@s avaluation and validation, and output processing such
2006, uiller et al. 2009, Brown 2014, Naimi and Araudjothat end-users (e.g. conservationist, evaluator) has enough
2016, Golding et al. 2018, Kass et al. 2018) accompammgormation at hand to judge the model’s reliability and rel
by detailed guides, manuals and textbooks (Elith et al. 2608nce without personal communication with the authors
Merow et al. 2013, Guisan et al. 2017). Despite their widl&raudjo et al. 2019, Garcia-Diaz et al. 2019, Rapacciuolo
spread use, SDM methods and results are often limite20i0).
their reproducibility because of a lack of reporting stanMethods reproducibility is crucial for ensuring adher
dards (Rodriguez-Castafieda et al. 2012, Araujo et al. 281& to minimum standards and supporting the delivery of
Feng et al. 2019, Hao et al. 2019). In the the lexiconaafequate outputs for policy decisions. Indeed, poor or incon
research reproducibility (Goodman et al. 2016), methsgdent modelling practices can lead to inappropriate infer
reproducibility means that su cient details are provided ence and misguided conservation actions (Garcia-Diaz et al.
data and methods in order to independently repeat the s@i9). Recognizing the necessity for reproducibility and
while results reproducibility means that the same residtssparency, the recent IPBES (Intergovernmental Science-
can be obtained from an independent study (Plesser 2@ty Platform on Biodiversity and Ecosystem Services)
Here, we propose a standard protocol for reporting SDWshodological assessment report acknowledged the need
to improve their methods reproducibility, ensuring transgar agreed-upon standards in biodiversity assessments
ency and consistency in their development and applicati(fferrier et al. 2016). Similarly, the IUCN (International
We here use the term SDM to refer to any empiricallijrion for Conservation of Nature) also de ned prelimi
based biodiversity model obtained from statistical aady standards that should be adhered to for assessing the
machine learning methods that associate geographic lifodat status of species based on SDMs (IUCN Standards
versity records (i.e. typically in the form of expert-derivedrut Petitions Subcommittee 2017); if these standards are not
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adequately met by a scienti ¢ study, then the results caprattice in reporting data and modelling choices. In particu
be used as input for conservation assessments or ddaisithe standard protocol provides a quick guide to the main
making. More recently, Araljo et al. (2019) proposed begtps of tting SDMs and a checklist of all the information
practice standards for biodiversity assessments using Sigbtsssary to evaluate the validity and reproducibility of an
and suggested scoring SDM studies into gold (aspiratioB&IM study for a particular application. is complements
silver (current best practice), bronze (acceptable practick)ntegrates recent work de ning range model metadata
and de cient categories based on the combined qualitgtafidards (RMMS; Merow et al. 2019). Importantly, we
the input data and the modelling, evaluation and pregicovide a web-based application to Il in the protocol and
tions approaches employed. When scoring a random sullgeh relies on and extends the metadata dictionary de ned
of 400 SDM studies, Araujo et al. (2019) found that 46%lmf Merow et al. (2019). Methodologies and data types evolve
the studies were de cient in at least one aspect. In particoar, time, and will require rede ning best practices with
many studies did not test the e ects of uncertainty in prespect to intended objectives. By harnessing the RMMS dic
dictor variables, structural and parameter uncertainty intitheary (Merow et al. 2019), ODMAP provides a guide for
models, or robustness of model assumptions. developing and a language for documenting SDMs based on
Best practice standards in modelling cannot be achidbvedRMMS dictionary. Although we acknowledge that the
unless standard procedures for reporting exist. A starglatdcol will require some time investment and may seem
protocol for reporting individual-based and agent-basaohbersome at the start, we believe that, in the long run, it
models (IBM/ABM) was introduced more than a decait®uld ease the burden on authors and reviewers by provid
ago: the ODD protocol (Overview, Design concepts, Detailg; a generic work ow and clear reporting guidelines that
Grimm et al. 2006). A review of the rst ve years of tlege understandable and easy to follow. Overall, the protocol
ODD protocol showed that it not only improved the transhould not increase the length of publications because much
parency of IBM/ABM studies but also facilitated a mafethe description can be provided as Supplementary material.
rigorous formulation of models by providing a checklist of
critical modelling steps to consider (Grimm et al. 2010).
Similarly, shared data standards like the Darwin CArstandard protocol for species distribution
Standard (DwC; Wieczorek et al. 2012) and metadata stapndels
dards like the Ecological Metadata Language (EML; based
on Michener et al. 1997) have proved essential to -congé propose a standard protocol that follows the ve basic
ing primary biodiversity data records in repositories suamadelling steps of SDMs (described in e.g. Guisan and
GBIF (<www.gbif.orgé; Anderson et al. 2016). RecentlZimmermann 2000, Elith and Leathwick 2009, Franklin
Merow et al. (2019) de ned a range modelling metada€d0, Peterson et al. 2011, Guisan et al. 2017, Aradjo et al.
framework to report the modelling steps and results f@da9): Overview/Conceptualisation, Data, Model tting,
SDMs, and Feng et al. (2019) suggested a checklist Addessment and Prediction (ODMAP; Fig. 1). We set it
essential elements needed to ensure SDM reproducihifityn an easy to follow checklist format (Table 1). Ia prin
Both author groups emphasised that the proposed franimpde, this protocol should work for any empirically-based
works provide only starting points that require further dewébdiversity model beyond single species distribution mod
opment through community e orts. With this in mind, wels, including e.g. community-level models (D’Amen et al.
engaged in such a community e ort to re ne these initk117, Norberg et al. 2019, Zurell et al. 2020) and models of
metadata standards and merge them within a standard piotctional composition (Wiest et al. 2018). Often, SDMs
col for reporting SDM methods from scienti ¢ studies. constitute only one part of the methods of a study and are
Standardised approaches not only benet beginnersupplemented by further analyses. Here, we argue that any
the eld, but also authors, expert referees and journal gdéenti ¢ application of SDMs should include the entire
tors. Speci cally, for authors, standard protocols encou@B& AP protocol (Table 1), but in most publications it will
de ning and reporting the modelling steps in a structuteel su cient to include the Overview section of ODMAP
way. For reviewers and editors, they provide an e cient \{i&dy. 1) as prose in the methods of the main text, while mov
of judging whether appropriate modelling decisions wagethe entire ODMAP checklist to the Supplementary mate
made with respect to the study objectives and whetheri#h€also see example case studies in Supplementary materia
modelling study is reproducible. For evaluators and polippendix 1-9). In the following, we rst give a brief-over
makers, standard protocols will help form expectationsi®iv of the di erent ODMAP sections before providing fur
which information will be found where (Rapacciuolo 2018)er details on each of these (Fig. 1, Table 1).
thus simplifying meta-analyses and facilitating scoring th&ny SDM or biodiversity analysis starts with the con
various model elements according to best-practice standapdisalisation of one or several underlying questions and
(Aratjo et al. 2019). related hypotheses. ese conceptual considerations should
Here, we propose an adaptation of the ODD protocoltte summarised in the Overview section, which captures
SDM studies. Our aim is not to de ne best practice in déta skeleton of the analyses, providing enough information
and methods (Aradjo et al. 2019), but rather to support Bestreaders to understand the model setup and work ow
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Overview / *Model objective

Conceptualisation *Taxon, location, predictors, scale
* Conceptual underpinning

«Software, codes and data availability

GENERAL
SPECIFICATIONS

Predictions (5) (2) Data

* Biodiversity data

* Data partitioning

* Environmental data
* Transfer data

Assessment (4) (3§ Model fitting

* Performance statistics * Variable selection
* Plausibility: response shapes, * Model settings and model complexity
expert judgement * Model estimates, variable importance
* Model selection, averaging, ensembles
* Non-independence analyses
* Threshold selection

* Prediction output
* Uncertainty quantification

TECHNICAL DETAILS

Figure 1. e ve main modelling steps in the species distribution modelling cycle also constitute the ve main sections of the ODMAT
(Overview, Data, Model, Assessment, Prediction) protocol. Each section contains unique information that is detailed in Table 1.

(Guisan and Zimmermann 2000, Austin 2002, 2007). pmedictions. If pure explanation is the goal of the SDM study
particular, Overview speci es the model objectives, the facdlno predictions are being made, then the protocol can be
organism(s), the type of biodiversity data, the type of emduced to the rst four sections.
ronmental predictor variables, the spatiotemporal scale of the
analyses, the underlying hypotheses about the biodiversity—
environment relationship, the critical model assumptioc@HDMAP sections and elements
the chosen SDM algorithms and desired model complexity,
and, lastly, the software used. Overview thus provides ala@Ei ODMAP section is divided into several subsections
but informative summary of the basic modelling decisitieg consist of di erent elements. A checklist of these is pro
and the modelling pipeline (Table 1). Including Overviewitded in Table 1 (and more detail provided in Supplementary
the methods section of a publication will thus ensure thatnallerial Table Al). We distinguish sections, subsections and
key aspects of the SDM are speci ed in the main text ofetleenents that are mandatory and should always be reported,
scienti ¢ article or report while details could be relegateff@a those that are only needed for speci ¢ model purposes
Supplementary material (Fig. 1). or are optional (Table 1). Filling in all mandatory, and {poten

e Data, Model, Assessment and Prediction sectionstially the optional, elds of ODMAP will ensure methods
ODMAP summarise the technical details needed te repeproducibility and transparency for peers and evaluators.
duce the methods (Feng et al. 2019, Merow et al. 2019) and
to assess their appropriateness for di erent purposes-(e.@eview
diversity assessments, Araujo et al. 2019). e Data section
details the data and their preparation, including poteniid identi ed eleven obligatory subsections that should-be spec
sampling bias and/or imperfect detection, any data cleargdgin the Overview section. ese are the modelling ebjec
and processing steps, as well as any (re-)scaling or traingfprve data-related subsections (focal taxon/taxa, location,
mation of data (spatial, temporal, taxonomic scaling). Mdaletliversity data overview, predictor type, spatial and-tempo
tting is the central step where species—environment relatiahscale), two conceptual subsections (hypotheses, underlying
ships are estimated using the selected algorithms. Ir theapsomptions) and three technical subsections (SDM algo
tocol, details should be provided about model settings, midtthehs, model work ow and the software and data used; Fig. 1,
tuning/selection, and whether and how potential sampliiaple 1). e Overview section thus brie y summarises the key
bias and/or imperfect detection have been dealt with. iformation relating to the analyses. In practice, the Overview
section on Assessment (of models) describes both hogettien may appear twice in scienti ¢ publications, once as
estimated species-environmental relationship was assassgkt in the methods section of the manuscript (cf. case
for plausibility and how the model’s predictive ability vaisdy 9 in Supplementary material Appendix 9) and once as
quanti ed using appropriate goodness-of-t measures pad of the full ODMAP checklist (Table 1) that should always
performance statistics. e Predictions section outlines the provided in SDM studies, preferably in the appendix. To
methods used to generate the spatial and/or temporal outpake this checklist a self-contained document, the author list
of the model (e.g. transfers/projections in space and tand)title of the study should also be speci ed in the Overview
as well as any procedures for addressing uncertainty in $bosien of the checklist.
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Table 1. The five main ODMAP sections and list of ODMAP elements. The full ODMAP v1.0 checklist is available in Supplementary material

Table A1.
ODMAP section ODMAP subsection ODMAP elements
Overview Authorship Authors, contact email, title, doi
Model objective/model purpose ~ SDM objective/purpose (inference, mapping, transfer), main target output
Taxon Focal taxon
Location Location of study area
Scale of analysis Spatial extent (lon/lat), spatial resolution, temporal extent/time period,
temporal resolution, type of extent boundary (e.g. rectangular, natural,
political)
Biodiversity data overview Observation type, response/data type
Type of predictors Climatic, topographic, edaphic, habitat, etc.
Conceptual model/hypotheses Hypotheses about biodiversity-environment relationships
Assumptions State critical model assumptions (cf. Table 2)
SDM algorithms Model algorithms, justification of model complexity, is model averaging/
ensemble modelling used?
Model workflow Brief description of modelling steps
Software, codes and data Specify software, availability of codes, availability of data
Data Biodiversity data Taxon names, taxonomic reference system, ecological level, biodiversity
data sources, sampling design, sample size per taxon, country/region
mask, details on scaling, data cleaning/filtering, absence data collection,
pseudo-absence and background data, potential errors and biases in data
Data partitioning Selection of training data (for model fitting), validation data and test (truly
independent) data
Predictor variables State predictor variables used, data sources, spatial resolution and extent of
raw data, map projection, temporal resolution and extent of raw data, data
processing and scaling, measurement errors and bias, dimension reduction
Transfer data for projection Data sources, spatial resolution and extent, temporal resolution and extent,
models and scenarios used, data processing and scaling, quantification of
novel environments
Model Variable pre-selection Details on pre-selection of variables
Multicollinearity Methods for identifying and dealing with multicollinearity
Model settings/model Models settings for all selected algorithms and for extrapolation beyond
complexity sample range
Model estimates Model coefficients, variable importance
Model selection/model Model selection strategy, method for model averaging, ensemble method
averaging/ensembles
Non-independence Spatial autocorrelation in residuals, temporal autocorrelation in residuals,
correction/analyses nested data
Threshold selection Details on threshold selection
Assessment Performance statistics Performance statistics estimated on training data, on validation data and on
test (truly independent) data
Plausibility check Response plots; expert judgements (e.g. map display)
Prediction Prediction output Prediction unit; post-processing steps

Uncertainty quantification

Uncertainty through algorithms, input data, parameters, scenarios;
visualisation/treatment of novel environments

[ Obligatory; ] Objective: mapping/interpolation; X1 Objective: forecast/transfer; L] Optional/context dependent.

Model objective elements of ODMAP, vary depending on the modelling

e Overview section should always start by specifying igjective (Table 1). ‘Explanation’ (also termed inference)
modelling objective/purpose. Please note that this doesetpirds detailed analyses of species—environment relation
refer to the overall study objective but rather describesitiiss and aims to provide or test speci ¢ hypotheses about
speci c use of the model. Following Araujo et al. (20183 main factors driving the species distributions. ‘Mapping’
we suggest clearly distinguishing between three potgatid termed interpolation) means that the estimated species—
purposes of modelling: 1) explanation, 2) mapping antke@)ironment relationships are used to map (or interpolate)
transfer. If several or all of these purposes apply, we stilggepiecies distributions in the same geographic area and time
to regard these as nested (explarati@ppingtrans period in which the model was calibrated. ‘Transfer’ (also
fer). Nesting accounts for the fact that transfer should teeined forecast or projection; but these terms are less precise)
be attempted without rst having a thorough understandim@ans that the estimated species—environment relationships
of the model (inference) (Araujo et al. 2019). Importantye transferred to a di erent geographic region or time period
several aspects of the modelling process, and with this seyetiale or past (Yates et al. 2018). If mapping or transfer is
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the goal, the main target output (prediction unit) should adlsgection, hypotheses regarding the ecological maedel pre
be specied in Overview as this will a ect other ODMA#ctors (biodiversity—environment relationship) should be

elements. clearly separated from hypotheses regarding the observation
(detectability—environment relationship) model predictors
Taxon, location, data and scale (Guillera-Arroita 2017).

e data-related subsections of Overview should specifyunderlying model assumptions are often overlooked or
the focal taxon/taxa, the location of the study, the typeaifeported in SDM studies. Table 2 lists a number of typical
biodiversity data, the type of predictors and the spatial asglimptions that are often made in SDMs. We encourage
temporal scales of analysis (Table 1). If the study focassksrs to be specic about such underlying assumptions,
on multiple species, it will be su cient to specify the madecause this helps reviewers or users assess the validity of
taxon/taxa or higher category here, e.g. birds or passettigeshosen approach for a given application. For example,
en, the authors should specify the type of biodiversityhen transferring SDMs under scenarios of global change,
observation (e.g. standardized monitoring, eld survey, raigieal assumptions are that 1) all relevant environmental
map, citizen science, GPS tracking) and the data/respgm&ers are included in the model, 2) the species’ observed
type used (e.g. presence-only, presence—absence, cdigiiution is in pseudo-equilibrium with the environment,
In addition, the type of predictor variables should be irg} the entire realised niche is encompassed by data, 4) the
cated (e.g. climatic, topographic, edaphic). Finally, inforg@relation structure between predictors does not change
tion should be provided regarding the spatial and tempbealveen source and target landscape and 5) if extrapolation
resolution and extent of the study system. Here, we ref@s iiovolved, that the model extrapolates in a biologically sen
the target scales of analyses while details on data procsib&#n@anner (Dormann et al. 2013, Elith 2017, Guisan et al.
and scaling are given in the Data section. Where relevan2dh®, Feng et al. 2019). Other critical assumptions related
type of boundary should be indicated (e.g. rectangular withiithe observation process are also frequently ignored: when
speci ed spatial extent, natural, political). In all cases mtihg SDMs, it is important to consider the issue of imper
tiple answers are possible, to allow for studies across médiipldetection (Kéry 2011, Lahoz-Monfort et al. 2014). We
regions, taxa and data types. recommend that authors be explicit about potential biases in
the data (Guillera-Arroita 2017).

Conceptual underpinning

Authors should clearly present their hypotheses aboutrdétical aspects

expected biodiversity—environment relationship, -meknportant technical aspects include the SDM algorithms
ing that they should justify what abiotic and biotic factéxsing used, along with a verbal description of model com
are taken into account to model the focal taxon, and glexity (especially if DMAP sections are moved to the
rationale behind these choices. Occasionally, studiesSwpglementary material). e choice and number of SDM
not seem to build on a priori hypotheses but may be ragiigsrithms contained in any study may vary depending on
exploratory, particularly when modelling many species imadelling objectives and personal experience, and as new
automated way. Nevertheless, we encourage authors #gbethms appear. For example, when SDMs are used for
explicit about these conceptual considerations (Mod etrahsfer under scenarios of global change, some scientists
2016). For instance, authors could argue that they are ugiv@cate using ensembles of SDM algorithms to account
climatic layers in an exploratory way because climatefovaggorithmic uncertainty (IUCN Standards and Petitions
known to be an important driver of species distributisbcommittee 2017, Araljo et al. 2019, uiller et al. 2019).

at a continental scale. In models that account for imperiecbntrast, if explanation or mapping is the goal, many users

Table 2. Typical model assumptions in species distribution models (Franklin 2010, Peterson et al. 2011, Guisan et al. 2017). Some of these
assumptions can be relaxed by extending models accordingly. For instance, models can be built to capture occurrence dynamics, including
spatial dependence, therefore relaxing the species—environment equilibrium assumption. Similarly, methods exist to address issues such as
sampling bias, imperfect detection or spatial autocorrelation.

Assumption Description

Species—environment equilibrium Species fill their niche and do not occur elsewhere

No observation bias issues Species data are free from observational bias (sampling bias, imperfect detection), or it is
accounted for in the model

Independence of species observations Each species record represents new information (e.g. not the same individual reported twice)

Availability of all important predictors Key explanatory variables are available and incorporated in the model; ideally these should
be proximal predictors, particularly when the objective is model transfer

Predictors are free of error Predictors are measured (or estimated) without error

Niche stability/constancy, niche Species retain their niches across space and time; particularly relevant when transferring

conservatism predictions
No other extrapolation issues Relationship fitted under current conditions apply when transferring predictions, even when

projected beyond the range of the training data; no change in correlation structure of
environmental variables; no change in key limiting processes (e.g. biotic interactions)
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select only one algorithm; for example, MaxEnt (Phillips etizeda, operationally de ned taxa (e.g. OTUs or ASVs from
2006, Elith et al. 2011, Merow et al. 2013) has been particarecoding), functional types, functional traits, ecological
larly prominent in recent years. Authors should also indicatemunities, community traits or species richness, among
whether they use model averaging or ensemble modeithngys. Likewise, studies modelling community-levelproper
(Hao et al. 2019). Here, we do not give any recommendaties need to specify how the community is being de ned (e.g.
as to which approach or algorithm may be more approptiaghic levels). Next, the data source needs to be described.
for a given application (Araujo etal. 2019). Rather, we-emjphthe data do not stem from one’s own eld surveys, then
sise that the modelling decisions need to be clearly desqnibpdr reference to the data source needs to be given. If
and justi ed, and model complexity needs to be aligned hida data stem from online data repositories such as GBIF
the model objective. We de ne model complexity as the &xhttp://data.gbif.org) or OBIS khttp://iobis.org-), then
ibility of the tted biodiversity—environment relationshijmformation on accession date and/or of the source should be
(cf. Merow et al. 2014, Muscarella et al. 2014, Cobos epabdvided. Generally, authors should follow good data cita
2019). Models can be more or less complex dependingoonpractices, for example as laid out by GBARv(v.gbif.
the algorithm but complexity also depends on several pavagricitation-guidelineg. Authors should also describe the
eter settings that determine the exibility of the responseerlying (spatial and temporal) sampling design and any
surface (Merow et al. 2014). Speci ¢ model settings shaldthils regarding temporal replications or nestedness of the
be detailed in the Model section. Nevertheless, we encodegge is point applies to all types of biodiversity data, not
authors to provide a general description of model complexity on one’s own eld data. If the biodiversity data stem
as part of the Overview section, for example ‘the medelfseh a standardised monitoring programme, then authors
tings were chosen to yield simple, smooth response sustagelsl detail here how the monitoring was carried out, e.g.
because we attempt extrapolation and the species may hotbeften observations were repeated and by whem (vol
at equilibrium with the environment’ or the model settingsteers, trained volunteers, experts). If the data stem from
were chosen to yield complex response surfaces becausdinedata repositories such as GBIF and OBIS, irforma
goal is to accurately map the potential species’ distributidgiomshould be supplied regarding the type of observations
the region and our model is based on a large enough sarsgte(Anderson et al. 2016) as these databases may include
size for calibrating such complex response surfaces’. mixed data from museum specimens, opportunistic ebserva
Lastly, the Overview section should contain a brief destiops and monitoring data. It is crucial that authors report
tion of the overall model work ow (or point to a owcharthe sample size for the focal taxa, as well as prevalence in the
in main text or appendix) and information on the softwa@se of presence—absence data.
packages and version, and software environment used ffisence, pseudo-absence and background data are an
modelling. Importantly, the availability of codes and datgortant issue for most SDM applications, and thus cru
needs to be speci ed. Here, we want to emphasise that wihiléo report in ODMAP. is is often also relevant when
ODMAP supports methods reproducibility, results +eptbe response variable is abundance or species richness. It i
ducibility can only be achieved if access to the exact dataranil to report how these absence data were obtained and

codes are provided. how accurate they are. Low detection probability wil inevi
tably yield false absences (Guillera-Arroita 2017). Many
Data SDM studies are based on presence-only data. Mest algo

rithms then require background data (also called ‘pseudo-
e Data section provides details about the species and eallsences’ or ‘quadrature points’) against which the observed
ronmental data, and about data processing. We have idenpresences are compared (Renner et al. 2015). For example,
two mandatory subsections that should always be descrilbeh presence records are spatially biased, one could sample
biodiversity data, and environmental data (Table 1). Tive background data such that they re ect the same spatial
other subsections are optional: data partitioning (for mdda$ (Phillips et al. 2009, Kramer-Schadt et al. 2013). Or if
assessment/evaluation), particularly important for map@m$ tracking data are used, then the background data (use

and transfer (Table 1), and transfer data (Table 1). versus availability) derived for each logged GPS location
could be drawn dependent on empirically observed distri
Biodiversity data butions of movement distances and directions (Fortin et al.

is subsection should contain all relevant information 0RB005, ur ell etal. 2014). us, authors need to specify the

the biodiversity data (Table 1). First, authors should progdegraphic region from which background data are drawn,
the taxon name(s) and information on the taxonomic mafy biases induced in the background data, the number of
erence system (e.g. APG 1V, GBIF Backbone Taxonoimggkground data points, and whether di erent strategies for
the latter being of particular importance if multiple spedaskground data derivation are used for di erent algorithms
or taxa are being modelled (e.g. all known migratory bifBarbet-Massin et al. 2012).

Zurell et al. 2018). en, the focal taxonomic units being Many of the remaining elements in the biodiversity data
modelled should be de ned. Although species are the mgissection are designated optional in Table 1 (i.e. context-
often used focal taxonomic unit, biodiversity models caiddghendent), because their necessity depends on the context
also focus on: populations, demographic traits, supraspetilee study. We encourage authors to consider any potential
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errors and biases in the data. For example, data may vaoyém data (Fritz et al. 2017), remote sensing data (Cord et al.
terms of spatial and temporal precision (Meyer et al. 2026),3, Kennedy et al. 2014, Leitdo and Santos 2019) and
which could signi cantly a ect model accuracy (Park andman impact data (Venter et al. 2016, Di Marco et al.
Davis 2017). Also, any steps taken to clean and scale the2@a&), among others. As these databases are under constant
both spatially and temporally, should be detailed here (Tdblelopment, it is crucial to provide information on-acces

1; Daru et al. 2018). Common data cleaning steps incleim date and versioning. Importantly, these data come with
the removal of outliers, duplicates, records pre-dating a sgiesient uncertainties that need to be addressed. For exam
ed year, and records with insu cient accuracy or associgikxl cloud cover may a ect the accuracy of the remote sens

information (Serra-Diaz et al. 2017). ing derived products such as vegetation indices. Also, when
using remote sensing time series for e.g. extracting pheno
Data partitioning logical metrics, di erent data densities along the time series

In most SDM studies, one will assess model performangdy di erent levels of certainty in the derived metrics. It
using data independent from those used for model ttiiggtherefore important for authors to report how they have
is is most important when the model objective is mapealt with this problem when using remote sensing variables
ping or transfer, although we do not wish to imply that(8chwieder et al. 2018).

may not be important for explanation as well. Ideally, &nvironmental data are often subject to some form of
modeller would use truly independent data from di eradimension reduction, e.g. in the case of multi-collinearity
sources or methods of collection to assess model perforf@megann et al. 2013), meaning that not all available envi
(Aradjo et al. 2005); if these are not available, it is commgrimental predictors will enter the model tting step. We
practice to partition data into training and testing sets. Anggest that if the dimension reduction is done witheut tak
such data partitioning should be clearly speci ed in the Datpinto account the response variable, then it should be part
section (Table 1). Following Hastie et al. (2009), we suggetiie Data section (cf. Table 1). For example, this could be
to clearly distinguish 1) training data that are being usegcase if principal component analysis is used to identify the
for model tting, 2) validation data that are withheld frommain environmental axes, which are then used for modelling
model tting and are used for estimating prediction errorsif@tead of the original environmental predictors, or where all
model selection, model averaging and ensemble buildinghandne of a set of highly correlated variables are dropped.
3) independent test data that are used to assess the generalisa

tion error of the nal model. Here, the strategy for paritiofransfer data

ing the data should be detailed. For example, validation lfldtee main modelling objective is to transfer the model to
could be obtained by splitting the data randomly, or into sgieerent geographic regions and/or di erent time periods
tially or environmentally strati ed blocks for cross-validatipfates et al. 2018), then authors need to report information
(Roberts et al. 2017, Valavi et al. 2018). e protocol hen the data used in the model transfer, i.e. the environmental
demands description of the way the data are partitioned data to which the model is projected (Table 1). Analagous to
appropriate justi cation based on strategies to remove ditke environmental data for model tting, information should

ent types of biases in evaluation. be included about the transfer data source (including acces
sion date, version, etc.), spatiotemporal resolution and extent,
Environmental data data uncertainties or errors and any data processing-and scal

Although the overall types of environmental predicter virg steps. If the transfer data stem from scenario modelling,
ables (e.g. climatic, topographic) should be mentionedoinexample future or past climate scenarios (IPCC 2013)
the Overview section, the Environmental data subsecdioth land cover scenarios (van Vuuren and Carter 2013), it
should clearly specify the individual environmental variagfgsild be explicitly speci ed and justi ed which underlying
used. All relevant information should also be given abngtiels (e.g. global circulation model, regional circulation
the data sources, the original spatial and temporat resedidel, global vegetation model) and scenarios (e.g. represen
tion and extent of the data as well as potential measuretagé concentration pathway, shared socioeconomic path
errors and biases (Morueta-Holme et al. 2018). Furthermaegys) have been used.

all data processing steps need to be described in detail, Wohen transferring models, we advocate for -assess
example spatial and temporal scaling, thematic scalingifg.genvironmental novelty because the transfer data may
collapsing of categories), transformations and normaligdude conditions not present in the calibration data (i.e.
tions, among others (Table 1). Spatial and temporal cavenon-analogue situations) and, thus, the calibrated model
age, resolution, and/or coordinate reference systems arentikglype forced to extrapolate (Sequeira et al. 2018).-We sug
to di er amongst predictor variables obtained from multigjest reporting how environmental novelty (Fitzpatrick and
data sources. us, any data harmonisation steps need teiaggrove 2009) was quanti ed as part of the transfer data in
clearly described in the Data section. In recent years, weti@ata section. Authors should specify exactly how novelty
seen an upsurge in the availability of digitally available @ae de ned and quanti ed; for example novel environments
information relevant for biodiversity modelling, spannia@ng single environmental gradients (Elith et al. 2010) or
climatologies (Hijmans et al. 2005, Karger et al. 2017), laagel combinations of environments (Zurell et al. 2012,
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Mesgaran et al. 2014). In addition to environmental noveltyWe recommend the use of the ‘range model metadata stan
modeling algorithms may also be sensitive to di erencegands’ (RMMS) dictionary (Merow et al. 2019) for reporting
collinearity structures of training and projection enviranodel settings, although we acknowledge that not all poten
ments (Dormann et al. 2013), thus assessments of colliti@aalgorithms and settings are currently included.

ity shifts can help evaluate the accuracy of model projections

(Feng et al. 2019 and references therein). Model selection, model averaging and ensembles
Often, authors do not simply t one model but consider a set
Model of di erent candidate models or model algorithms, applying

additional steps including model selection, model averaging
e Model section reports all the information necessary ¢ ensemble modelling. Model selection refers to situations
repeat the model building. We have identi ed six subsectighére di erent model structures are compared in order to
(see checklist in Table 1); three are mandatory (multishbose a single ‘best’ model or ‘best’ model set, either to
linearity, model settings/model complexity, analysis of ngiprove prediction accuracy by reducing the variance of
independence of data), two are context-dependent (varjgblficted values or to facilitate interpretation (Hastie et al.
pre-selection, model selection/model averaging/ensengges). Di erent approaches such as information criterion-
and one is relevant for mapping and transfers only (threshgéed variable selection and shrinkage of parameters fall into

selection). this topic. Model averaging refers to situations where dif
o ) _ ferent models are t and then combined into a single pre
Multicollinearity and variable selection diction, which could be desirable when several candidate

Highly collinear variables allow alternative model structgigglels are similarly plausible or because severat alterna
to yield very similar model ts. e uncertainty around whichjye modelling approaches are available (Hastie et al. 2009,
environmental predictor represents the true causal- mgshanann et al. 2018). Models might be averaged using an
nism may propagate into ‘in ated’ standard errors (Morrisggieighted consensus method or using weighted averaging
and Ruxton 2018). Dierent strategies exist to deal Wi#llowing information—theoretic, cross-validation or resam
multicollinearity, some of which will reduce the numberg)fng approaches (Dormann et al. 2018). It is crucial that
environmental variables to a set of reasonably correlated#ors detail exactly how model selection or modet averag
dictors (Dormann et al. 2013). In that sense, dealing Wi was carried out, including what data were used to choose
multicollinearity could also be seen as a data processingagigRgst models. e term ensemble modelling is often used
However, some strategies also'lnvolve the response vmt@b(ljﬁangeamy with model averaging, but could mere spe
and some preliminary model tting, or deal with mukicatj cally refer to cases where, in addition to using di erent
linearity as part of the model building process (e.g. fegidielling algorithms, the initial and boundary conditions
ization). We thus regard it as a mandatory part of the Mgl also varied (Aradjo and New 2007). Ensemble- model
section to report how multicollinearity was approached. |ing is most often used in the context of making transfers
ere may be other reasons to pre-select a speci ¢ setf@fecasting) and useful for exploring the range of predictions
predictor variables additional to redUCing multicollinear en the di erent uncertainties (|n|t|a| Conditions’ model
problems. For example, when attempting transfers autfigises, model parameters, boundary conditions, Aratjo and
may choose to limit the number of variables to avoid oy 2007, uiller et al. 2019), but it is also increasingly
tting and achieve simpler, more transferable modgdgd for mapping, e.g. to model rare species (Breiner et al.
(Elithetal. 2010). e strategy and rationale for selecting thg15 2018, Hao et al. 2019). Initial conditions refer to dif
nal set of predictors should be clearly described here. ferent input data, for example when alternative species data
sources are available or alternative climatologies. Boundary
Model settings and model complexity conditions refer to assumptions being made about changes
Detailing the choice of algorithms, speci ¢ model settingsredictor variables in the transfer data, for example the
and model complexity is key to ensure methods reprodiierent climate or land use scenarios as mentioned in the
ibility. We encourage authors to explicitly report the defabdita section. Similar to model averaging, di erent weighted
settings of speci ¢ software packages (rather than just ngtidgunweighted methods exist to combine the predictions
‘default settings were used’), as these may change baggeet al. 2019), which should be reported.
the software version. For algorithms and estimatiorr frame
works that rely on prior information (e.g. o sets in GLMS\odel estimates
prior distributions (Bayesian models) or weights, these Mg@dencourage authors to report whether and how model
to be speci ed and justi ed. For Bayesian model tting \dee cients were extracted from the models and analysed,
Markov Chain Monte Carlo (MCMC) sampling, the rumand how variable importance was determined (e.g. through
ber of MCMC samples discarded (burn-in) and kept; nupermutation, Strobl et al. 2007). Further, identifying and
ber of chains and convergence criterion need to be repa$sgssing parameter uncertainty is important for guiding
When the model is being transferred, authors also neddttme work, e.g. monitoring e orts for improving the model
report model settings relevant for making such spatieterapd reducing uncertainty, and for attributing con dence to a
ral predictions (e.g. clamping in MaxEnt). certain model (Beale and Lennon 2012). It is thus crucial to
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report how parameter uncertainty in SDMs was quanti®ed mandatory subsections to report in this section:-perfor
(e.g. using asymptotic approximations based on statistieake statistics, and plausibility checks (Table 1). Irrespective
theory, or approaches based on resampling such as bootdttap model aim, assessing predictive performance on (semi-)

ping, Kéry et al. 2013). independent data informs us of generalisability and-over t
ting (Hastie et al. 2009). Constructing partial plots (= e ect
Non-independence analysis/correction plots, response curves, marginal responses, Elith et al. 2005)

Most standard statistical methods, and most SDM tegfovides an intuitive way to evaluate the ecologicat plausi
niques, assume that the response data are random sasiipjesf the tted model. Plausibility could also be checked
and, thus, that errors are independent and identically-dishybinspecting the spatial (and/or temporal) predictions. Both
uted. However, three common kinds of non-independepksusibility checks are a form of expert judgement.

could occur in SDMs: spatial autocorrelation, temporal auto

correlation and nesting (Table 1). As a result, we manBafermance statistics

that authors clearly describe how non-independence in Blatiormance statistics are important for assessing the valid
and residuals was analysed and corrected in this subsigtadra model for a speci ¢ goal and for comparing models,
of the Model section of ODMAP. Spatial autocorrelationand di erent statistics are under constant development and
model residuals means that predicted values at nearbytéstimg. We do not wish to give advice on which performance
tions are not independent from each other (Dormann etatasures should be used but rather emphasise the need to
2007) (but see Diniz-Filho et al. 2003). Analogously, tempeport on these performance measures and any additional
ral autocorrelation in residuals may occur when consecintfigemation necessary to interpret them. Generally, per
time steps are not independent from each other, which miigitmhance should be assessed with respect to the aim of the
be an issue when analysing e.g. GPS locations from aappétation and to the response variable. For most response
movement data. Lastly, the assumption of independengariables, e.g. for abundance and presence—absence data alike,
violated if the data contain repeated observations of the d&taance measures between hold-out data and prediction are
subject or are grouped or nested in some way. For exapgintially suitable (Sequeira et al. 2018). ese include the
radio-tracking animals will yield multiple, non-independenbt—mean—square—error (RMSE), log-likelihood, various
GPS locations per individual and the locations of the saar&@tions of RINash and Sutcli e 1970, Nagelkerke 1991),
individual are likely to be more related to each other thathtopercentage of deviance explained (Hosmer and Lemeshow
locations of other individuals. If several individuals have 28418) or calibration curve estimates (with the intercept quan
radio-tracked in di erent regions, then individuals from thi§/ing bias and the slope depicting overcon dence, Harrell
same region may show a more similar habitat preference20@8). If predictions were re-calibrated (Guisan et al. 2017),
individuals from di erent regions. If the data are groupedtliis should be noted as well.

such a way, then the model needs to account for this reldor presence—absence data, we may distinguish threshold-
edness, for example by means of random e ects (Zuur @dpendent measures such as the AUC (area under receiver-

2009). operating characteristic curve ROC, Swets 1988), explained
deviance and log-likelihood, and threshold-dependent indi
Threshold selection ces (Guisan et al. 2017). e latter are typically based on the

is subsection is important in presence-only and presen@anafusion matrix (e.g. correct classi cation rate, sensitivity
absence models, and in particular for mapping or transfeanth speci city, precision, Fielding and Bell 1997), are sen
the case of a binary response variable, most SDM apprositiesto the prevalence and cannot be interpreted without
produce continuous outputs such as habitat suitability ifidiWhen reporting thresholded indices, such as the true-
ces or probabilities of occurrence. Whilst there are ggldldi statistic (Allouche et al. 2006) or kappa (Cohen 1960),
arguments for retaining predictions on a continuous seatbors must report the threshold selected and the rationale
(Lawson et al. 2014, Guillera-Arroita et al. 2015), sofoe selecting it (cf. Model section, Table 1) or whether any
users prefer to threshold them for certain applications. Tthdeshold-optimisation approach was applied (e.g. maxTSS,
so, they need to de ne an adequate threshold to transf@uisan et al. 2017). Lastly, for presence-only methoes alter
the data. Several dierent thresholds have been propoadde performance measures have been introduced that
depending on whether the presence—absence or presemié-using a confusion matrix, such as the Boyce index
only data are being used for modelling (Liu et al. 2005, 2qB)yce et al. 2002, Hirzel et al. 2006) or POC plot (Phillips
or when modelling communities (Scherrer et al. 2018). Hared Elith 2010).

authors need to specify which threshold is used and explain

why thresholding is deemed necessary. Plausibility checks
e ecological plausibility of the model and model predictions
Assessment can be checked by inspecting the response shape of the t

ted biodiversity—environment relationship and by inspecting
After model building, typically a series of analysis stepthammapped predictions. Response shapes are one of the most
aimed at assessing whether the modelled biodiversity—iemptrtant outputs of SDMs as they summarise the estimated
ronment relationships are t for purpose. We have designgpeties—environment relationship and can thus be directly
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subjected to plausibility checks against available biologlieatory uncertainty) and in boundary conditions (e-g. sce
knowledge. For example, when the input data were seleetéd uncertainty). In the Prediction section, it is important
to approximate drivers known to be ecologically importanteport how any sources of uncertainty were dealt with when
we can determine whether the model represents plauddnieing the nal prediction(s), such that maps of potential
relationships between the drivers and the species’ occurspoes distributions are accompanied by equivalent ‘maps of
Checking the plausibility of the functional relationshipsigmorance’ that convey how and where reliable predictions
a model is also particularly important when the modears (i.e. magnitude and extent of prediction uncertainty),
used to transfer the species—environment relationship tothereby supporting their correct and honest interpretation
time periods and regions (uiller et al. 2004). Generall{Rocchini et al. 2011). We note that suitable tools for-uncer
response shapes can be visualised using more traditionipgr estimation are now readily available for all stages of the
tial dependence plots, evaluation strips (Elith et al. 2005nodelling process (Beale and Lennon 2012). Error propa
in ated response curves, which also help to identify extrggadion, for instance, is possible via bootstrapping or within
lation (Zurell et al. 2012). Furthermore, such plots indic&ayesian frameworks. Garcia-Diaz et al. (2019) recommend
the range of predictor values present in the calibration ¢édéting (posterior) distributions of model outputs to give a
beyond which predictions would rely on modelling assumgasure of the likelihood of di erent values that can be read
tions (Qiao et al. 2018) and become less reliable. Ideally,isuctterpreted in an ecological risk assessment context.
partial plots should also include a 95% con dence or credmplementations of ODMAP involving model transfers
ible interval. Simply plotting the predictions against the estiould specify how environmental novelty was accounted for
ronmental predictors used in model tting can provide a istpredictions. We are aware that some overlap and confusion
approximation of response shapes. Additionally, visual insg#t the Data section could occur, which demands details
tion of the mapped prediction can constitute an importamt how environmental novelty was quanti ed (Table 1). In
plausibility check for spatial models. We encourage modéfier®rediction section, we particularly recommend to focus

to describe any such evaluations here. on reporting any post-processing steps related to predictions,
such as masking or highlighting predictions to novel environ
Prediction ments (Zurell et al. 2012).

e Prediction section of ODMAP only bears relevance if

models are used to make spatial (or temporal) predictiopgylying ODMAP

new sites including mapping (interpolating) and/or-trans

ferring (extrapolating). It comprises two main subsectiqasaplate and web application

1) prediction output, and 2) uncertainty quanti cation.

Although this section deals primarily with spatial predictiofahle 1 provides the basic template for the ODMAP (ver.

note that the nal product may not necessarily be a mapbQ) protocol (for the detailed template see Supplementary
could also be a data table containing the predictions atrspéerial Table Al). As indicated previously, we distinguish

ci ¢ locations with speci ¢ environmental conditions. elds that are mandatory and elds that are optional. e
mandatory elds also vary depending on the modet objec
Prediction output tive (inference, mapping or transfer). at way, the ODMAP

First, prediction unit(s) should be clearly stated in ODMA&ble can be lled in step by step.

for example continuous occurrence probabilities or potentidlo simplify use of ODMAP, we provide an interac
presence derived by thresholding. Also, for some SDM gilgm Shiny web application as an online resoudntps://
rithms there may exist alternative interpretations of outpoatbnap.wsl.ch; ODMAP v1.0). is allows lling in the

e.g. MaxEnt and point process models where predicttbresent ODMAP elements through a browser interface
could be interpreted as relative occurrence rates or re(&itye2). e resulting ODMAP table can be downloaded,
densities, depending on assumptions about the data (saamdeslso uploaded again for resuming work on the ODMAP
of species versus samples of individuals, respectively). Seaindol. We call this version ODMAP v1.0. e ODMAP

any post-processing steps undertaken after predictingldrg app interacts with rangeModelMetaData R-package
detailed here. is could include clipping the predictions tRMMS, Merow et al. 2019) and uses the RMMS dic

a speci c region or land cover map, e.g. clipping predid¢iedary to make auto-suggestions, for example, concerning
butter y occurrences to where the host plant is predictedlgnrithms and model settings. e app also allows existing

occur. RMMS objects to be loaded to Il in the ODMAP table. An
important di erence between RMMS and ODMAP is that
Uncertainty quantification RMMS is meant to store metadata for each model object,

Studies applying SDMs for mapping and/or transferrimgich could mean that several RMMS objects are needed for
should always address how uncertainty in model- preaisingle study, and RMMS also stores important results to
tions was quanti ed. We can distinguish between uneertaimsure results reproducibility. By contrast, ODMAP is meant
ties in the input data, model structure (e.g. between maaletontain the methodological descriptions for the entire
algorithms), parameters, residual uncertainty (irreduciB@M component of a study and is dedicated to method
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(A)

ODMAP v1.0 What is ODMAP? How to use this app Create a protocol Protocol viewer Upload / Import

What is ODMAP?

Species distribution models (SDMs) constitute the most common class of biodiversity models. The
advent of ready-to-use software packages and increasing availability of digital geo-information
have considerably assisted the application of SDMs in recent years enabling their use in informing
conservation and management, and quantifying impacts from global change.

( ) ODMAP v1.0 What is ODMAP? How to use this app Create a protocol Protocol viewer Upload / Import
1.Overview  2.Data  3.Model  4.Assessment  5.Prediction
Progress
Overview Give a brief overview of all important parts of your study.
——
Authorship
Data
Predicting the distribution of shrub species in southern California from climate and terrain-derived variables |
(c) ODMAP v1.0 What is ODMAP? How to use this app Create a protocol Protocol viewer Upload / Import
- ODMAP protocol -
Predicting the distribution of shrub species in southern
California from climate and terrain-derived variables
Authors: Janet Franklin
Contact:
Date: 2020-03-02
( ) ODMAP v1.0 What is ODMAP? How to use this app Create a protocol Protocol viewer Upload / Import

There are two options for importing data into your ODMAP protocol

(1) Upload an ODMAP protocol (.csv)
This option is convenient if you want to edit or resume working on a previously saved ODMAP
protocol.

(2) Upload an RMM file (.RDS or .csv)

Figure 2. Screenshots of the interactive Shiny web application of ODMAP. e browser interface shows several tabs. (A) Describes the |
features of ODMAP and provides the reference. (B) Contains the ODMAP core and allows entering the relevant information into the ¢
ferent ODMAP elds. Optional elds (cf. Table 1) can be hidden. Preliminary or nished ODMAP protocols can be downloaded as wort
document or as csv le. (C) e progress of ODMAP can also be assessed using the Protocol viewer. (D) Previous ODMAP protocols
be uploaded to continue protocolling or revising.

reproducibility. To accommodate these di erences, we infoomulated as ow text for the methods section of the main
duced an ODMAP family into the RMMS package to alldext following the structure of the Overview section in Table 1.
reporting for an entire study rather than single model objects.

As Merow et al. (2019) pointed out, the RMMS di€etiorcase studies
ary will need to grow through a community e ort. Here, we
attempted a rst such e ort and updated the dictionary l&/Supplementary material Appendix 1-9 includes nine-exam
adding more algorithms and model settings to report. Aleyapplications of ODMAP. All of these examples are taken
further updates to the dictionary will also be automaticéiiyn previously published studies, and we revised the associ
accommodated in the ODMAP Shiny app. Similar to tated model descriptions according to ODMAP. Most examples
ODD protocol, we anticipate that ODMAP will require regelate to terrestrial plants, birds and butter ies (Franklin 1998,
ular and systematic evaluation by the scienti c communitiptsmann et al. 2008, Schroder et al. 2009, Leitéo et al. 2010,
identify elements that are not being used or interpreted &apacciuolo et al. 2012, Fandos and Telleria 2017, Zurell et al.
sistently and may potentially need updating (Grimm et2020) but we also included a marine (Bouchet and Meeuwig
2010). Any future ODMAP versions will be published in tB815) and an epidemiological example (Peterson and Samy
web application, with changes and updates clearly spe2Ddé). Examples cover all model objectives (inferenee/expla
to ensure that older and newer ODMAP applications wiition, mapping/interpolation, forecasts/transfers), single and
remain comparable and compatible. multiple species, di erent SDM algorithms as well as JSDMs.

We recommend that the entire ODMAP checklist (e4jl case studies are presented as ODMAP tables (Table 1),
obtained from lling in the template based on Table 1, orwiich we would generally advise to include in the appendi
lling in the ODMAP elds in the web application) shouldes of publications. In one case study (Zurell et al. 2020), we
be provided as Supplementary material in SDM studies, m@ldb provide an example version of the ow text that could be
cating the ODMAP version. Additionally, we suggest thatith@duded in the corresponding manuscripts and reports as part
general speci cations from the Overview section shouldfiibe Overview section.
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Introduction / ODMAP CH ECKLIST\

AUTHORS

m Study design
M Science writing

REVIEWERS / EDITORS

M Peer review

M Author guidelines

Methods

Results

Discussion EVALUATORS

@ Meta analyses /

Figure 3. Schematic representation how ODMAP compiles relevant information about the SDM modelling process. Left: applicatic
ODMAP to the case study by Franklin (1998) showed that relevant information has previously been scattered in scienti ¢ publica
(grey lines) or missing (black dotted lines). Also see corresponding ODMAP protocol in Supplementary material Appendix 4. R
ODMAP provides an easy-to-follow checklist for authors, reviewers, editors and evaluators.

In most of the case studies, we found that there had br@sparent biodiversity assessments. As the rst iteration of
a great deal of detail provided for the biodiversity and esmvieporting protocol, there are likely to be improvements,
ronmental data, and also data processing and potential beaeements and disagreements. However, by developing a
were described in depth. Often missing were details afobatklist’ of standard operating procedures, we hope to make
software versions, packages and parameter settings thatitveasier for authors to report, and for readers to understand,
be required for reproducibility. Most of the information sp&DM data and methods, as ODD has done for ABM/IBM
i ed in ODMAP elements was provided in the main text @&rimm et al. 2006, 2010). Notably, ODMAP is not meant
the original publications. erefore, ODMAP relevant inforto prescribe how modelling should be carried out but-to pro
mation was sometimes scattered across the entire publicédi®em structured format for how models should be reported.
rather than just in Methods sections (Fig. 3). When applylimdeed, comparability and transparency are necessary steps
ODMAP, most test authors found that the protocol considemwards developing and applying best-practice standards for
ably helped identifying and structuring relevant informatitie eld (Aradjo et al. 2019).
for model descriptions. Nevertheless, test authors also indilany of the authors of this protocol have played major
cated that retrieving the single ODMAP elements ard aates in developing and re ning di erent SDM methods, and
tents from the original publications was sometimes di cuktpresent a critical mass of SDM developers, users and review
is emphasises that the method descriptions of SDM studégs. Based on this collective experience, we have designec
have not, to date, followed any standard structure or op&BIMAP to be general enough to accommodate SDM
ing procedures to this date (Feng et al. 2019), which ham@marting in the very broadest sense. In other words, it applies
reproducibility and peer review as well as literature revievany study using a statistical framework to explain, predict
expert assessments and meta-analyses (Araudjo et al. 2@t#)/dt project biodiversity distributions. While the specif
also means that ODMAP will take some time getting usedic® of the source data and methods may change for response
but the overall bene ts should outweigh the growing painganiables other than the widely-used species occurrence data
the long run. Previous experience with the adoption of Opf@resence’), the requirements for reporting the conceptual
(Grimm et al. 2006, 2010) suggests important potential benderpinnings as well as the Data, Model, Assessment and
e ts of such a standard protocol including more rigordrediction sections described in Table 1 remain relevant and
model formulation, simpli ed peer review, better compaagplicable.
bility between models, easier communication between di©DMAP is best suited for empirical-based biodiversity
ciplines, and stronger emphasis on theoretical foundatiom®dels thatare tted using rule-based, statistical and machine-
learning methods. Of course, also other more process-explicit
distribution models exist that are used for predicting range
Discussion dynamics (Zurell et al. 2016, Briscoe et al. 2019) or for
testing hypotheses about deep time processes (Rangel et al
Our hope is that the ODMAP protocol can enhance trans@g18). Many ODMAP elements, such as variable selection
ency, reproducibility, evaluation and reuse in SDM researahapproaches to deal with multicollinearity, will not-neces
to facilitate peer review, meta-analyses and more robussaaiig apply to these models. Despite this, the main sections
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of ODMAP - overview, data, model, assessment, predidtjotthe joint BiodivERsA-project GreenFutureForest (grant no.
— could also provide a useful skeleton for describing Mbk&1610A). WT was supported by the GAMBAS project funded
complex, process-explicit models, at least if the general B¥g#e French National Research Agency (ANR-18-CE02-0025).
elling framework is published and known (Lurgi et al. 2015, was partly funded by OPNAV N45 and the SURTASS LFA
By contrast, if authors are designing process-explicit mggg|§ment Agreement, being managed by the U.S. Navy's Living
from scratch (Rangel et al. 2018), then we encourage Eﬁie Resources program undeGCntractno. N39430-17-.C-1982.

. cknowledges funding from National Science Foundation grant
to use protocols such as ODD (Grimm et al. 2006, 201§y 1565046 and DBI 1661510. JF acknowledges the support of
which put more emphasis on speci ¢ design decisions. he National Science Foundation (USA) grant no 1853697. GGA
and 5 oasy 10 Use 26 possible, & protocel oxplicitly el phssareroey, * Fror o1 e Ausraian Research Councilvia
a checklist of reporting items and is thus easy to follow and
apply in practice (Fig. 1). In particular, the ODMAP table
(currently, ver. 1.0) and web application provide a stB@ferences
by-step guide through modelling and reporting, and inte
grate with current metadata standards (Merow et al. 20Aguche, O. et al. 2006. Assessing the accuracy of species distribu
Moreover, we have designed ODMAP to apply for a broadion models: prevalence, kappa and the true skill statistic (TSS).
range of modeliing objectives, and our example applicalio —g;ls.oé]ppé. EPC?alf glszz%)zlés_:rzesgbecies occurrence data in global
Ei)\rlzwdn? adgltlonal (r[:]u(;dan_ce (t)l? how di erept StIUdAy obj online repositories t fpr 'mod(.eling specigs distripptions? e

S may D€ reportead using this same protocol. AS an eXgse of the global biodiversity information facility (GBIF).
bene t, the ODMAP checklist also provides a roadmap for_ ging report of the task group on GBIF data tness for use in
planning all relevant modelling steps in SDM studies. Weyistribution modelling.
anticipate that ODMAP will prompt researchers to consigeddjo, M. B. and New, M. 2007. Ensemble forecasting of species
methodological issues that tend to be more easily overlooketributions. — Trends Ecol. Evol. 22: 42-47.

(e.g. uncertainty reporting) and to appropriately addressAayjo, M. B. et al. 2005. Validation of species—climate impact
issues in the modelling process such as model validatiomodels under climate change. — Global Change Biol. 11:
Identifying and addressing these issues at an early stage W#p4-1513. o ,
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