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 Empirical species distribution models (SDMs) constitute often the tool of choice for the assessment of rapid climate change 
eff ects on species ’  vulnerability. Conclusions regarding extinction risks might be misleading, however, because SDMs do 
not explicitly incorporate dispersal or other demographic processes. Here, we supplement SDMs with a dynamic popula-
tion model 1) to predict climate-induced range dynamics for black grouse in Switzerland, 2) to compare direct and indi-
rect measures of extinction risks, and 3) to quantify uncertainty in predictions as well as the sources of that uncertainty. 
To this end, we linked models of habitat suitability to a spatially explicit, individual-based model. In an extensive sensitivity 
analysis, we quantifi ed uncertainty in various model outputs introduced by diff erent SDM algorithms, by diff erent climate 
scenarios and by demographic model parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. 
By the end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some climate scenarios. 
In contrast, population size and occupied area were primarily controlled by currently negative population growth and 
gradually declined from the beginning of the century across all climate scenarios and SDM algorithms. However, predic-
tions of population dynamic features were highly variable across simulations. Results indicate that inferring extinction 
probabilities simply from the quantity of suitable habitat may underestimate extinction risks because this may ignore 
important interactions between life history traits and available habitat. Also, in dynamic range predictions uncertainty in 
SDM algorithms and climate scenarios can become secondary to uncertainty in dynamic model components. Our study 
emphasises the need for principal evaluation tools like sensitivity analysis in order to assess uncertainty and robustness in 
dynamic range predictions. A more direct benefi t of such robustness analysis is an improved mechanistic understanding of 
dynamic species ’  responses to climate change.   

 Recent studies in biogeography and macroecology resulted 
in growing concerns about species ’  range shifts driven by 
ongoing climate and land use change. Species dynamically 
adjust their ranges in response to the complex interplay of 
environmental forces, changing biotic interactions, and 
their interactions with key demographic traits (Walther et al. 
2002, Ara ú jo and Luoto 2007, Th uiller et al. 2008). To date, 
a substantial body of literature has amassed on predicting 
potential range dynamics as well as extinction risks in order 
to derive mitigation strategies for global change impacts 
(Midgley et al. 2002, Th omas et al. 2004, Th uiller 2004). 

 Many, if not most, recent climate impact studies rely on 
correlative, phenomenological species distribution models 
(SDMs). Th ese derive statistical relationships between the 
species ’  occurrence (or abundance) and prevailing environ-
mental (biotic and abiotic) factors to characterise the envi-
ronmental niche (Guisan and Zimmermann 2000). Potential 
future ranges of species are projected by transferring this 

relationship to future environmental conditions, thus allow-
ing for rapid assessment of potential threats. SDMs require 
comparably simple species location data such as presence-
absence and do not rely on profound prior knowledge on 
the species ’  biology. Th erefore, they constitute one of few 
practical approaches to study environmental change impacts 
on a wide range of species quickly (Huntley et al. 2004, Elith 
and Leathwick 2009) and have spurred hundreds of applica-
tions and publications on these issues (Zimmermann et al. 
2010). 

 However, SDMs are not intended for making transient 
predictions under environmental change. Many recent pub-
lications have tried to raise awareness to the inherent funda-
mental as well as methodological limitations accompanying 
SDMs (Buckley and Roughgarden 2004, Hampe 2004, 
Guisan and Th uiller 2005, Dormann 2007). Some princi-
pal limits for SDMs arise from their conceptual underpin-
ning. Foremost, they assume that species are in equilibrium 
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with their environment, which may not even be the case 
for many post-glacial distributional ranges (Svenning and 
Skov 2004). Correspondingly, when extrapolating to new 
times and places, SDMs implicitly assume an instantaneous 
realisation of a new equilibrium situation. Th ereby, transient 
population dynamics and important life history traits such 
as dispersal capacity and local persistence ability that shape 
a species ’  response to environmental change are essentially 
ignored (Th uiller et al. 2008, Zurell et al. 2009). Th is may 
lead to biased estimates of extinction risks. In addition, dis-
cussions about methodological issues prevail. Diff erent SDM 
algorithms, for instance, have led to divergent predictions of 
habitat suitability for scenarios of climate change (Th uiller 
2004, Pearson et al. 2006, Buisson et al. 2010). Among 
others, model predictions can be expected to be sensitive 
to model building steps and data characteristics including 
uncertainty in future climate scenarios (Ara ú jo and Guisan 
2006, Heikkinen et al. 2006, Dormann et al. 2008). 

 Challenges for SDM predictions under environmental 
change are manifold and, therefore, several steps have been 
proposed to improve SDMs and to yield more robust predic-
tions. One solution is to make use of multiple models within 
an ensemble framework which allows analysing the range 
of uncertainty introduced, for example, by diff erent SDM 
algorithms and diff erent climate scenarios (Ara ú jo and New 
2007, Th uiller et al. 2009). To overcome fundamental limi-
tations of SDMs that are related to their static nature, several 
authors have urged to supplement SDMs by more mecha-
nistic, stochastic population models that incorporate key 
demographic processes determining range dynamics (Guisan 
and Th uiller 2005, Ara ú jo and Guisan 2006, Schr ö der 2008, 
Th uiller et al. 2008, Zurell et al. 2009). Stochastic popula-
tion models explicitly describe demographic processes such 
as mortality, reproduction and dispersal while taking into 
account environmental and demographic stochasticity. Th ey 
allow the assessment of species vulnerability or extinction risks 
via population viability analyses (PVA, Burgman et al. 1993, 
Brook et al. 2000) and may help to uncover  ‘ tipping points ’  
that lead to rapid and potentially irreversible species ’  responses 
to environmental change (Pereira et al. 2010). However, these 
models are also highly data demanding, usually involve more 
complex model structures, and rely on extensive knowledge 
on species ’  biology and population processes which often 
constrains the spatial scale of the studies, the number of spe-
cies or the generality of results (Jeltsch et al. 2008). 

 Attempts have been made to make use of both phe-
nomenological and population dynamic approaches when 
predicting climate change-induced range shifts (Keith et al. 
2008, Anderson et al. 2009, Cheung et al. 2009). Th ereby, 
SDMs and comparably simple, spatially explicit population 
models are integrated by constraining basic demographic 
parameters of the dynamic model (e.g. carrying capacity) 
by SDM output (e.g. habitat suitability). As such, the pre-
dictive accuracy of SDMs at large spatial scales is retained 
while being able to capture transient population dynamics 
in response to climate change (Keith et al. 2008, Gallien 
et al. 2010). Another simple way is to run a dynamic, multi-
species population model under a range of environmental and 
landscape contextual conditions, and then to fi t the major 
outcome of these simulations, namely migration rate, against 
climate and competition as predictors, and to combine this 

information in a simple GIS time-step model to predict tran-
sient responses of the target species to changing land use and 
climates (Meier et al. 2011). 

 Th e goal of all these considerations and eff orts is to increase 
robustness of model predictions under environmental change. 
Quantitative predictions of models typically carry substantial 
error margins due to structural (model specifi cation) uncer-
tainty and parameter (data) uncertainty as well as inherent 
(natural) stochasticity of ecological dynamics (Barry and Elith 
2006, Jeltsch et al. 2008). Conclusions regarding the robust-
ness of predictions can only be made conditional on explicit 
simulation runs. When integrating SDMs and dynamic popu-
lation models in order to predict range dynamics for scenarios 
of environmental change fi nal predictions essentially carry 
errors of three diff erent models (SDM, population model and 
climate model; Beaumont et al. 2008, Wiens et al. 2009). 
Th ese uncertainties need to be quantifi ed in order to draw 
inferences about the robustness of model results. 

 In this context, the objectives of our study were three-
fold: 1) to predict climate-induced range dynamics for black 
grouse in Switzerland, 2) to compare direct and indirect 
measures of extinction risks, and 3) to quantify uncertainty 
and robustness of predictions and assess relative contribution 
of diff erent modelling components to overall uncertainty. To 
achieve this, habitat suitability maps obtained from spatio-
temporal SDM predictions were linked to a spatially explicit 
individual-based model that described key demographic 
processes of black grouse. Predictions were derived and 
compared for multiple key model outputs (population and 
occupied area size, probability of extinction, mean elevation 
and mean population centre). Uncertainty in predictions 
was quantifi ed by extensive sensitivity analysis. Th ereby, 
we focused on three diff erent uncertainty components: cli-
mate scenarios, SDM algorithms, and demographic model 
parameters. Furthermore, sensitivity was evaluated for each 
key model output to delineate more or less robust features of 
dynamic range predictions.  

 Methods  

 Species data 

 In the Swiss Alps, black grouse  Tetrao tetrix  mainly occurs in 
treeline habitats, in dwarf-shrub-rich transition zones between 
forests and alpine meadows at an altitude of up to 2500 m 
a.s.l. (Zbinden and Salvioni 2003). Swiss black grouse pop-
ulations were judged as stable by comparisons between the 
two observation periods of the Swiss Breeding Bird Atlases 
1972 – 1976 and 1993 – 1996 (Schiff erli et al. 1980, Schmid 
et al. 1998). However, population sizes are known to fl uctu-
ate strongly and, thus, estimates on population status derived 
from such short time periods may be imprecise. For example, 
local declines were reported for the northern as well as south-
ern Prealps caused by habitat loss and fragmentation (Schmid 
et al. 1998, Zbinden and Salvioni 2003). 

 Species distribution data at 1 km resolution were obtained 
from the Swiss Breeding Bird Atlas (Schmid et al. 1998). 
Count data for assessing reproductive success were obtained 
from a time series observed between 1981 and 2007 in 
Ticino, Switzerland, where the numbers of chick-rearing 



592

hens and juveniles were recorded annually in the second half 
of August (Zbinden and Salvioni 2003).   

 Environmental predictors 

 Environmental predictors included climatic variables as 
well as land use and vegetation data at 1 km resolution. 
Climate data were derived from the BIOCLIM database 
(Swiss Federal Research Institute WSL) including long-
term averages from the period 1961 – 1990 on summer 
(June – August), winter (December – February) and annual 
values for the variables: precipitation sum; mean temper-
ature; potential solar radiation; mean summer moisture 
index (precipitation  –  potential evapotranspiration); and 
growing degree days above 0 ° C. Details for the deriva-
tion of these climate layers are given in Zimmermann 
and Kienast (1999) and in Guisan et al. (2007). Land use 
and vegetation data were compiled from the land use and 
land cover database GEOSTAT (Swiss Federal Statistical 
Offi  ce). From these, we chose fi ve land use categories that 
we deemed sensible to explain black grouse presences 
and absences, based on the ecology of the species: scattered 
forest, bushy forest, grassland and arable land, unproduc-
tive vegetation, and residential and infrastructural areas.   

 Climate change scenarios 

 Climate change scenarios were obtained from the ENSEMBLES 
Project (  � www.ensembles-eu.org �  ). Five scenarios were 
obtained from three regional circulation models with three dif-
ferent underlying general circulation models and three diff erent 
emission scenarios (A1B, B1, B2, Table 1). Th ese scenarios were 
chosen to refl ect a range of predictions for the central European 
Alps that were both realistic and reached from pessimistic to 
optimistic. Scenarios were downscaled to a 1 km spatial reso-
lution according to the procedure described in Engler et al. 
(2011). Climate scenarios were available as 10 yr time slices 
which we interpolated to obtain annual changes in climate. 
Th e general climate trend over the 21st century is illustrated in 
Supplementary material Appendix 1, Fig. A1.   

 Species distribution model 

 Black grouse potential distribution was predicted using 
three diff erent statistical algorithms that take presence-
absence input data, are widely used in species distribution 
modelling and that present diff erent levels of fl exibility (Elith 

et al. 2006, Heikkinen et al. 2006), namely: generalised lin-
ear models (GLM), generalised additive models (GAM) and 
boosted regression trees (BRT). 

 In order to minimise multicollinearity problems, we pre-
selected the fi nal predictors prior to modelling so that bivari-
ate Spearman correlations were below |r|  �  0.7 (Fielding and 
Haworth 1995). Th ereby, we gave preference to land use vari-
ables as we regard these as more proximal predictors for black 
grouse occurrence and, hence, retained only those climate 
variables that we expected to have a direct eff ect on black 
grouse occurrence. Our fi nal predictor set included fi ve land 
use variables (see above), two climate variables (mean annual 
temperature, winter precipitation), and potential solar radia-
tion describing topographic eff ects. 

We allowed second-order polynomials in GLM, and non-
parametric cubic smoothing splines with up to four degrees 
of freedom in GAM. BRT was estimated with a tree com-
plexity of 2, a bag fraction of 0.75 and a learning rate of 0.01 
which ensured that the model was fi tted with at least 1000 
trees (cf. Elith et al. 2008). 

 A split-sample approach was used to validate SDM perfor-
mance (Ara ú jo et al. 2005). Models were calibrated on a ran-
domly selected sample of 70% of the data and validated against 
the remaining 30%. Data splitting was repeated 100 times and 
evaluation statistics were averaged to yield a fi nal evaluation 
that is quasi-independent of initial conditions (Th uiller et al. 
2009). Several measures of accuracy were calculated: explained 
deviance R 2  (Menard 2000), the area under ROC curve (AUC; 
Fielding and Bell 1997), the true skill statistic (TSS) (Allouche 
et al. 2006), sensitivity (true presences) and specifi city (true 
absences) as well as slope and intercept of the calibration curve 
which describe spread and bias in the predictions (Reineking 
and Schr ö der 2006, Zurell et al. 2009). We derived the devi-
ance by applying Eq. 1.10 in Hosmer and Lemeshow (2000). 
As TSS, sensitivity and specifi city require binary predictions we 
converted the predicted occurrence probabilities into presence-
absence maps by applying the prevalence threshold (Liu et al. 
2005). All SDMs with accompanying analysis of their perfor-
mance were built in R ver. 2.12.1. 

Th e resulting SDMs estimated black grouse occurrence 
probabilities for entire Switzerland. High occurrence probabil-
ities were interpreted as indicating environmental conditions 
that defi ne highly suitable habitat for black grouse (Ara ú jo 
et al. 2002, S ö ndgerath and Schr ö der 2002).   

 Individual-based model 

 We simulated population dynamics of black grouse by a 
stochastic, spatially-explicit individual-based model (IBM) 

  Table 1. Regional circulation models (RCM) used in the ensemble simulations of this study. Each RCM was based on the boundary inputs 
from a general circulation model (GCM). We used three different SRES scenarios, which translate for the Swiss case study to tabulated climate 
anomalies by the end of the 21st century ( Δ T,  Δ P).  

Short RCM GCM Institute SRES  D T  D P

H-a1 HadRM3qO HadCM3 HC A1B  � 5.26 ° C  � 4.67 mm
M-a1 CLM ECHAM5 MPI A1B  � 4.51 ° C  � 5.96 mm
M-b1 CLM ECHAM5 MPI B1  � 3.07 ° C  � 10.51 mm
S-a1 RCA30 CCSM3 SMHI A1B  � 2.71 ° C  � 0.70 mm
S-b2 RCA30 CCSM3 SMHI B2  � 2.89 ° C  � 1.55 mm

   HC: Hadley Center; MPI: Max Plank Inst.; SMHI: Swedish Meteorological and Hydrological Inst.   
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annual survival probability pSurv, the probability of an indi-
vidual hen to survive until early spring. Mortality and emi-
gration may increase with density due to increased predation 
risk or simply due to shortage of resources. At the end of 
the simulation year (early spring), the age of all individuals 
is incremented by one year. Individuals growing older than 
MaxAge are removed. 

Design concepts :  the model follows a bottom-up 
approach, and population dynamics and spatial distribution 
of black grouse emerge from individual behaviour. Life cycle, 
reproduction, and survival rates are imposed by empirical 
rules and parameters. Dispersal includes the basic adap-
tive decision to avoid unsuitable and over-crowded habitat. 
Demographic stochasticity is included to mimic individual-
level variability by interpreting all demographic parameters 
as probabilities (Burgman et al. 1993). Environmental sto-
chasticity is considered by drawing pleadYoung (probability 
of hen to reproduce and raise juveniles that survive until fi rst 
autumn) from a normal distribution. Th is parameter sub-
sumes the processes of nest predation, hatch rate and early 
chick survival that are most strongly infl uenced by environ-
mental fl uctuations between years. Th e normal distribution 
was defi ned by the mean and SD derived from empirical 
data, cut at minimum and maximum of empirically observed 
values (Table 2). Key outputs monitored from the model are 
population size, probability of extinction by time t (propor-
tion of replicate runs that went extinct), area size, mean ele-
vation, and mean population centre (long/lat). 

 Initialisation: initially, 8000 individuals were randomly 
distributed in suitable habitat, and were assigned a random 
age (between 1 and 3 yr), which is in accordance with data 
from the Swiss Breeding Bird Atlas (Schmid et al. 1998). 
Th e initial habitat suitability map is obtained from the 
species distribution model run with current climate. Th e 
model  ‘ spinned-up ’  for 25 yr to exclude initialisation eff ects 
(Rossmanith et al. 2007). After this  ‘ spin-up ’  climate change 
was initiated with annual timesteps. 

 Input data: for each time step, a habitat suitability map is 
derived from the species distribution model described above 
given the environmental input layers (climate and land cover). 

 Submodels: detailed descriptions of submodels 
implementing the modelled processes are provided in 
Supplementary material Appendix 1. Th e entire IBM was 
implemented in C �  � .   

 Sensitivity analysis 

 We evaluated three major sources of uncertainty in range 
predictions: underlying species distribution models (SDM), 
climate scenarios (RCM), and demographic parameters of 
the individual-based model. In a preliminary local sensitiv-
ity analysis we found that IBM parameters aff ecting survival 
and reproduction, namely survival probability (pSurv), the 
probability to be female at birth (pFemale) and the prob-
ability of a hen to lead young (pleadYoung ) , were the most 
sensitive parameters for range predictions while others such 
as dispersal parameters had little eff ect on population fate. 
Th is is not unexpected because as black grouse range con-
tracts and retrieves to higher elevations of the Swiss Alps in 
response to warmer regional temperatures the species ’  fate 

that followed the fate of individual birds from birth to 
death. Th e subsequent model description follows the ODD 
(overview, design concepts, details) protocol for describing 
individual-/agent-based models (Grimm et al. 2006, 2010). 

 Purpose: the main purpose of the model is population 
viability analysis. 

 Entities, state variables and scale: female birds constituted 
the biological entity in our model. In black grouse, females 
are the limiting sex regarding not only reproduction but also 
dispersal as the latter is restricted predominantly to fi rst-year 
hens while fi rst-year cocks affi  liate to the nearest lek (mating 
arena for competitive courtship display), and adults are rather 
sedentary (movements within the home ranges were ignored, 
Caizergues and Ellison 2002). Individuals were characterised 
by the state variables location and age. Th e model landscape 
represented entire Switzerland and consisted of a grid of 
42 181 cells of 1 km resolution. Each grid cell was charac-
terised by its carrying capacity  K . Boundary conditions were 
refl ecting so that emigration from the study area equalled 
immigration. Th e model proceeded in annual time steps 
(from spring to spring). 

 Process overview and scheduling: at the beginning of each 
time step, carrying capacity K of all cells was determined 
from habitat suitability as estimated by SDMs. In summer, 
hens reproduce and raise juveniles that survive until fi rst 
autumn with the probability pleadYoung (see Table 2 for 
IBM parameters). Th us, pleadYoung subsumes the processes 
of clutch survival, hatching rate and early chick survival. Th e 
probability of a hen to lead a certain number of juveniles is 
p(x)Fledglings. Th e probability for a fl edgling to be female is 
pFemale, otherwise it is a male and is subsequently ignored. 
In autumn, fi rst-year hens disperse from their natal patch 
with a probability pDispersal. Individual birds perceive 
the environment as heterogeneous and avoid to settle in 
or to traverse wide stretches of unsuitable habitat (Graf 
et al. 2007). All sources of mortality are subsumed under an 

  Table 2. IBM parameters.  

Parameter Value Description

pleadYoung 0.6    �    0.09 probability of a hen to lead 
young during simulation 
year

(min, max) (0.39, 0.77)

p(x)Fledglings 0.103/1, 
0.198/2, 
0.270/3,
0.249/4,
0.124/5, 
0.037/6, 
0.013/7, 
0.004/8,
0.002/9

probability to produce x 
fl edglings (given as 
probability/clutch size)

pFemale 0.5 probability to be female at 
birth

pDispersal 0.81 probability of juveniles to 
emigrate

meanDist 8 mean dispersal distance [km]
rangeDist 1.0�29.0 range dispersal distance [km]
pSurv 0.5 probability to survive the 

simulation year
Kmax 10 maximum carrying capacity 

[km �2 ]
MaxAge 10 maximum age
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SDMs explained between 57.2 and 59% of the deviance in 
black grouse occurrence (Supplementary material Appendix 
1, Table A1). 

 GLM predicted greatest total area size of potentially suit-
able habitat for black grouse under current environmental 
conditions, BRT smallest (year 2001; GLM 11 690 km 2 , 
GAM 11 240 km 2 , BRT 10 590 km 2 ). Predictions of habitat 
suitability changes under climate change were very similar 
across all three SDMs. Diff erences did not emerge until the 
end of the 21st century when predictions varied consider-
ably across climate change scenarios with great and abrupt 
habitat losses under the more extreme scenarios H-a1 and 
M-a1 (Supplementary material Appendix 1, Fig. A3). For 
these extreme cases, also diff erences between SDMs became 
more apparent with greatest losses predicted by GAM, low-
est by GLM. Altitudinal ranges were predicted to shift uphill 
from mean elevations of approx. 1800 m a.s.l. in 2001 to 
mean elevations of approx. 2200 m a.s.l. by 2100 (Fig. 2, 
Table 3). BRT predicted accompanying range contractions 
while GLM and GAM predicted an eastward shift in suitable 
habitat. Range contractions were predicted in the western 
Prealps primarily due to elevational limits (Fig. 3). Consensus 
on black grouse presence was high for the central and eastern 
Swiss Alps (Supplementary material Appendix 1, Fig. A4).   

 Population dynamics 

 Th e IBM predicted mean population sizes of ca 5500 female 
black grouse for current environmental conditions and for 
default IBM parameterisation (Fig. 4, Table 3). Population 
size was predicted to gradually decline over the century 
(Fig. 4). By the end of the century, black grouse popula-
tion sizes were predicted to drop to 12 – 22% of their initial 
size. Th e strong population decline mainly resulted from a 
negative population growth rate given the demographic rates 
(Table 2). For comparison, we manipulated the parameter 
survival probability so that current population trend was 
stable (pSurv  �  0.51). Th is resulted in higher predicted 
population sizes and moderate declines which were simi-
lar in trend yet not identical in shape to habitat trajectory 
(Supplementary material Appendix 1, Fig. A5).   

 Sensitivity analysis 

 Th e relative contribution of each uncertainty component 
to variation in predictions diff ered for the diff erent time 
slices considered and for the diff erent model outputs. Great 
variations across simulations were found in predictions of 
population dynamic features such as population and occu-
pied area sizes as well as for probabilities of extinction. 
Variation in predicted population size due to uncertainty 
in demographic parameters was approximately one order of 
magnitude greater than variation due to environmental and 
demographic stochasticity and due to uncertainty in SDMs 
and climate scenarios (Table 3, 4). On the other hand, geo-
graphic features like mean population centre, range extent, 
and mean elevation showed comparably low variation across 
simulations. Diff erent climate scenarios had no consider-
able eff ect on population dynamic features, yet they were 

is more restricted by local persistence ability and successful 
establishment at higher elevations than by dispersal. Th us, in 
subsequent sensitivity analysis we concentrated on the three 
above-mentioned survival and reproduction parameters and 
varied them in a 3 k  factorial design (low, intermediate, and 
high values given by default parameters in Table 2  �  5%). 
As pleadYoung is drawn from a normal distribution we 
manipulated both position and shape of this distribution by 
shifting the entire distribution by  �  5% and by varying the 
standard deviation of this distribution by  �  5% (resulting in 
a more peaked or more fl attened distribution). Our sensitiv-
ity analysis thus crossed three diff erent SDM techniques, fi ve 
diff erent climate scenarios, and four diff erent demographic 
parameters (note that pleadYoung counts twice) with three 
levels each resulting in a total of 1215 diff erent model con-
fi gurations. For each of these we performed 35 replicates 
(McCarthy et al. 1995). We quantifi ed the sensitivity in the 
years 2001, 2050 and 2100 for fi ve diff erent model outputs 
(population size, probability of extinction by year t, area 
size, mean elevation, and mean population centre). First, for 
each parameter combination we calculated the mean values 
of the fi ve key model outputs from the 35 replicate simu-
lations. Th en, for each model output and for each uncer-
tainty component we performed univariate linear regressions 
with the respective model output as dependent variable and 
the respective uncertainty component as independent vari-
able (cf. Dormann et al. 2008). Th e relative contribution 
of each uncertainty component to variability in predictions 
was then given by the explained variance R 2  of the linear 
regression models. Additionally, we ran  ‘ control ’  simulations 
with default IBM parameterisation across the diff erent SDM 
algorithms and climate scenarios with 100 replicates each to 
obtain an estimate of variation in model outputs due to sto-
chasticity. All analyses of IBM output were carried out in R 
ver. 2.12.1.    

 Results  

 Statistical modelling and range predictions 

 All three SDM techniques fi tted consistent relationships 
between black grouse occurrence and environmental predic-
tors (Fig. 1) although diff erences were also apparent, mainly 
in areas of the environmental space with lower data cover-
age. Mean annual temperature was by far the most impor-
tant variable (Supplementary material Appendix 1, Fig. A2), 
followed by grassland cover type which mainly described 
species absences, and followed by bushy and scattered for-
est and unproductive vegetation which were more important 
for describing species presence. In the split-sample validation 
(n  �  100) we found only slight diff erences in model perfor-
mance between methods. All three SDMs showed excellent 
discrimination in terms of AUC (approx. 0.95), very good 
accuracy in terms of TSS (approx. 0.78), high rates of correctly 
predicted presences (sensitivity: 0.93 – 0.95) and absences 
(specifi city: 0.84 – 0.86), and excellent calibration (calibra-
tion slope and intercept near one and zero; Supplementary 
material Appendix 1, Table A1). BRT showed highest scores 
for all measures except for sensitivity, which was highest for 
GLM (although diff erences were not pronounced). Overall, 
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Figure 1.     Partial dependence plots for all eight environmental predictors and for the three diff erent SDM algorithms (BRT, GAM, 
GLM).  

the most important uncertainty component for geographic 
features. Specifi cally, the variation in mean elevation was 
best explained by climate scenarios (Table 4, Fig. 2). Also, 
the choice of SDM algorithms had no eff ect on population 
dynamic features, but explained a considerable amount of 

variance in mean population centres and in mean eleva-
tion. Probability of survival proved to be the most crucial 
demographic parameter (Table 4). For example, the linear 
models fi tted to the results of the sensitivity analysis esti-
mated that an increase in survival probability of 0.01 would 
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  Table 3. Model output for default IBM parameterisation, averaged 
across different SDM algorithms and climate scenarios. For each 
combination of SDM algorithm and climate scenario the IBM was 
run with 100 replicate simulations.  

Output Year Mean SE Median

Population size 2001 5508 56 5144
2050 2318 36 1998
2100 974 21 703

Area size [km 2 ] 2001 3221 27 3090
2050 1478 20 1323
2100 662 14 504

Mean elevation [m] 2001 1791 1 1791
2050 2039 15 2026
2100 2217 32 2171

  Figure 2.     Mean elevation occupied by black grouse for scenarios of 
climate change. Bottom: grey lines show mean elevations across all 
simulations, coloured lines those for default IBM parameterisation 
(cf. Table 2) across diff erent SDMs and climate scenarios. Top: box-
plots depict variation of mean elevations predicted for the end of 
21st century (2100) and for diff erent SDMs and climate scenarios.  

cause an increase in population size of 3000 to 4000 indi-
viduals (compare Supplementary material Appendix 1, Fig. 
A5). Under current climate, survival probability alone repre-
sented 55% of variation in population size and even 68% of 
variation in occupied area size. While probability of extinc-
tion by 2100 was zero for the default IBM parameterisation, 
decreases in the demographic parameters especially survival 
probability led to black grouse extinction in up to 90% of 
the simulations on average (Fig. 5). Conversely, increases in 
the demographic parameters reversed climate-induced popu-
lation declines and even led to temporarily increasing popu-
lation sizes (Fig. 4). Th e shape of the probability distribution 
of pleadYoung (more fl attened or more peaked; determined 
by standard deviation of the Gaussian distribution, Table 2) 
and, thus, the magnitude of environmental stochasticity, had 
no eff ect on the mean predictions but only resulted in slightly 
increased variability between replicates of simulations. We 

calculated a consensus map across all simulations as the frac-
tion of simulations (n  �  1215) that predicted black grouse 
to be present at a site (Fig. 6). Under current climate, con-
sensus about black grouse presence was very high ( �  80%) 
in the Swiss Alps and intermediate (20 – 60%) for most parts 
of the Jura mountains where black grouse are in fact absent 
(Schmid et al. 1998). With ongoing climate change, con-
sensus on presence sites decreased considerably as extinction 
probability increased for many model confi gurations.    

 Discussion 

 In this study, we integrated correlative species distribution 
models and a simple, spatially explicit individual-based 
model to predict climate-induced range dynamics of black 
grouse in the Swiss Alps and evaluated variability introduced 
by diff erent uncertainty components. By this, we were able 
to better understand important features of range predic-
tions and current as well as transient population dynamics. 
Our results clearly show that extinction risks cannot sim-
ply be approximated by expected changes in suitable habi-
tat (Ak ç akaya et al. 2006, Keith et al. 2008, Brook et al. 
2009). Rather, the expected population trajectory seems to 
result from a complex interplay between available habitat 
and demographic processes. Our study also underscores the 
necessity of sensitivity analyses in dynamic range predictions. 
Predicted population response to environmental change may 
be highly variable, both quantitatively as well as qualitatively. 
Th us, robustness of modelling results can only be assessed if 
the inherent uncertainty is explicitly considered.  

 Black grouse population and range dynamics 

 We were very careful in choosing SDM algorithms and 
climate scenarios that were both realistic and refl ected a 
range of predictions reaching from pessimistic to optimis-
tic. Overall, all three SDMs produced congruent predic-
tions of habitat change (Supplementary material Appendix 
1, Fig. A3). Absolute area size of suitable habitat, however, 
diff ered slightly and diff erences became more pronounced 
with ongoing climate change. Th is both corroborates and 
contradicts fi ndings of previous studies. On the one hand, 
diff erences between predictions become more pronounced 
the further we project into the future which is in line with 
earlier fi ndings (Th uiller 2004, Pearson et al. 2006, Buisson 
et al. 2010). Consensus between SDM predictions was still 
remarkably high though (Supplementary material Appendix 
1, Fig. A4) while earlier studies partially reported highly con-
trasting predictions (Buisson et al. 2010). Nevertheless, fur-
ther research is needed regarding why method performance 
and predictions diff er (Elith and Graham 2009) and to pro-
vide general guidelines on appropriate model choice. 

 By the end of the 21st century, diff erences in suitable area 
were larger between climate scenarios than between SDMs. 
Considerable loss in suitable habitat was predicted for 
two out of fi ve climate scenarios, namely for the more 
extreme climate scenarios with mean temperature increases 
between 4 ° C and 5 ° C. Current trends in CO 2  emissions and 
global air temperature indicate that expected increases in 
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Figure 3.     Mean population centres of black grouse for scenarios of climate change. Small symbols show mean population centres predicted 
for diff erent SDMs (from top to bottom) and for the years 2050 (left) and 2100 (right) across diff erent climate scenarios and model param-
eterisations. Th ereby, dark triangles depict current population centre, dark circles depict default IBM parameterisation (cf. Table 2), light 
circles depict all simulated population centres for the respective time slice. Ellipses depict 1.5 directional standard deviation. Black ellipses 
depict current black grouse range, coloured ellipses depict default IBM parameterisation, grey ellipses depict all simulated ranges for the 
respective time slice.  

temperature may be at the upper end of current climate pro-
jections or even above (Rahmstorf et al. 2007). Th us, while 
absolute area size of suitable habitat is predicted to remain 
more or less unchanged until the middle of the century, in 
the second half of the century abrupt losses in suitable area 
of 40% are not unlikely to expect. However, our results 
also clearly demonstrate that suitable and actual habitat are 
not directly related and, thus, population trajectory may 
take a diff erent course than suitable habitat (Supplementary 
material Appendix 1, Fig. A5). 

 In the dynamic model runs, the area of suitable habitat 
was not completely occupied by black grouse. Under cur-
rent environmental conditions, the high sensitivity of occu-
pied area size to survival probability indicated high site 
turnover where suitable habitat frequently became unoc-
cupied. Higher survival probabilities and, thus, higher local 
persistence ability led to lower site turnover, more complete 
range fi lling, and consequently to greater area occupied and 
less fragmented ranges. Although the model predicted only 
small declines and shifts in suitable habitat early in the 21st 
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  Figure 4.     Population size relative to 2001 (current climate). Bot-
tom: grey lines show relative population trajectories across all simu-
lations, black lines those for default IBM parameterisation (cf. 
Table 2) across diff erent SDMs and climate scenarios. Top: box-
plots depict population size ratio of year 2100 relative to 2001 for 
diff erent demographic parameters.  

century, gradual declines in black grouse population and 
occupied area sizes were predicted across all climate sce-
narios and underlying SDMs. Th is primarily resulted from 
a negative trend in population growth given the observed 
demographic rates (Fig. 4). On the other hand, Schmid et al. 
(1998) judged the population to be stable but these estimates 
rely only on rather short time periods. Th e strong fl uctua-
tion and high site turnover predicted by our model suggest 
that longer observation periods are needed to accurately assess 

black grouse population status. Reassuringly, however, even 
with the negative trend in current population growth rate, 
population size is predicted to not fall below 1000 hens by 
2100 which is a decent population size especially as that pop-
ulation is predicted to strive in continuous areas (Fig. 6). 

 Our results underscore that inferring extinction risks sim-
ply from quantity of suitable habitat might be misleading 
(Supplementary material Appendix 1, Fig. A5; Ak ç akaya et al. 
2006, Keith et al. 2008, Brook et al. 2009). A non-dynamic 
approach might considerably underestimate extinction risks 
because important interactions between life history traits and 
habitat suitability would be ignored. Expected mean abundance 
is only indirectly related to habitat suitability through demo-
graphic functions which determine site turnover and, thus, how 
much of available habitat is maximally occupied at the time 
(Table 4). Considering the diff erences between habitat suitabil-
ity predictions by diff erent SDM algorithms and the associated 
population dynamics (Supplementary material Appendix 1, Fig. 
A5), expected mean abundance also depends on spatial distribu-
tion of available habitat and on the degree of fragmentation.   

 Robustness of range predictions 

 Our study not only highlights the benefi ts of a dynamic 
approach to range predictions but also underlines that we 
have to deal with immense additional prediction uncertainty 
when modelling population dynamics and that robustness 
of model results needs to be explicitly assessed. Here, quan-
titative predictions of absolute population and occupied area 
size as well as probability of extinction showed great varia-
tions across simulations (Table 4). Th is is in accordance with 
previous criticism on spatially explicit simulation models 
(SEPM, Dunning et al. 1995) and related population viabil-
ity analysis (PVA) expressing concerns about taking predic-
tions, for example probabilities of extinction, at face value 

  Table 4. Sensitivity analysis of model outputs based on n  �  1215 model confi gurations.  

Explained variance R 2  by uncertainty components 
and direction of infl uence (in parentheses)

Output Year Mean SE Median N SDM RCM pSurv pFemale

plead 
Young 
mean

Population size 2001 15 430 558 5127 1215 0 0 0.55 ( � ) 0.14 ( � ) 0.10 ( � )
2050 17 330 618 2207 1215 0 0 0.60 ( � ) 0.11 ( � ) 0.08 ( � )
2100 13 770 521 856 1215 0 0.04 0.52 ( � ) 0.09 ( � ) 0.07 ( � )

Probability of extinction 2001 0 0 0 1215
2050 0.23 0.01 0 1215 0 0 0.44 (�) 0.10 �) 0.08 (�)
2100 0.38 0.01 0 1215 0 0 0.59 (�) 0.08 (�) 0.07 (�)

Area size [km 2 ] 2001 4462 120 3022 1215 0 0 0.68 ( � ) 0.12 ( � ) 0.09 ( � )
2050 4339 138 1389 1215 0 0 0.63 ( � ) 0.09 ( � ) 0.07 ( � )
2100 3685 126 585 1215 0 0.02 0.56 ( � ) 0.08 ( � ) 0.07 ( � )

Mean elevation [m] 2001 1788 0.19 1790 1215 0.18 0.13 0.14 ( � ) 0.05 ( � ) 0.03 ( � )
2050 2014 2.33 2013 1102 0.08 0.40 0.11 ( � ) 0.01 ( � ) 0.01 ( � )
2100 2199 4.39 2159 900 0.14 0.63 0.03 ( � ) 0 0

Mean   population   centre 2001 Easting 683 600 57 684 000 1215 0.18 0 0.21 ( � ) 0.05 ( � ) 0.03 ( � )
2001 Northing 160 000 20 159 800 1215 0.50 0 0 0 0
2050 Easting 694 800 422 697 000 1102 0.01 0.01 0.10 ( � ) 0 0
2050 Northing 158 400 176 158 200 1102 0.01 0.01 0.01 (�) 0 0
2100 Easting 707 200 581 706 700 900 0.05 0.13 0.01 ( � ) 0 0
2100 Northing 157 400 187 157 200 900 0.06 0 0.02 (�) 0 0
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(Beissinger and Westphal 1998, McCarthy et al. 2003). 
Alternatively, we could have made qualitative predictions 
by evaluating relative diff erences among model outputs. 
However, previous SEPM and PVA discussions focused 
on equilibrium population dynamics opposed to transient 
dynamics as expected under environmental change. In our 
black grouse system, also predictions of relative population 
size were fragile across parameter space and rather sensitive 
to demographic parameters and available habitat (Fig. 4). 
We believe this is a symptom of two general problems when 
using such simple SEPMs in combination with SDMs in 
environmental change context. First, it is diffi  cult to deter-
mine reasonable error margins for the highly aggregated 
demographic parameters to be used in robustness analysis 
of model predictions. Second, if the structure of the demo-
graphic model is very simple this may lead to high parameter 
sensitivity and thus large prediction uncertainty. 

 For the sensitivity analysis of the demographic parameters, 
we chose a heuristic rather than applied view by perturbing 
the parameters in fi xed intervals of  � 5% instead of choosing 
error margins that could be expected in the fi eld. One reason 
for this was simply because such error margins were diffi  -
cult to evaluate for Swiss black grouse, which probably holds 
for the majority of populations/species. On the other hand, 
longer-term predictions are inherently risky for example due 
to unforeseeable fl uctuations induced by the environment 
and that way current error margins for demographic param-
eters might not be very meaningful under climate change. 
In this respect, we fi nd it reasonable to heuristically choose 

the parameter space as it allows theoretically circumscribing 
possible population outcomes given these boundary condi-
tions. Although, we believe that the fi xed interval of   � 5% 
of the respective demographic rate is greater than the error 
range that could reasonably be expected in Switzerland for 
these highly aggregated parameters, for example survival 
probability. 

 It is known from PVA that very simple population mod-
els generally exhibit high parameter sensitivity and thus 
large prediction uncertainty (Beissinger and Westphal 1998, 
Grimm and Storch 2000). Arguably, combined population  –  
SDM models should be as simple as possible because they 
have to cover a wide range of habitat types and environmen-
tal conditions. Due to its simplicity the model presented here 
is also highly general and  –  especially in conjunction with 
extensive sensitivity analysis  –  it provides valuable insights 
into possible population outcomes for Swiss black grouse. 
However, the large parameter sensitivity in the demographic 
model may in part arise because important mechanisms 
shaping population response are missing or inadequately 
represented in the model structure. For example, Grimm 
et al. (2005b) suggested that simple population models may 
overestimate extinction risk because they lack certain buf-
fer mechanisms that reduce environmental stochasticity. 
Th ereby, the most simple and general buff er mechanism 
that could be considered is individual variability such that 
individuals diff ering in fi tness are not equally aff ected by 
environmental fl uctuations (Rossmanith et al. 2006). Also, 
the exact form of density dependence and carrying capacity 
may strongly aff ect predicted extinction risks (Beissinger and 
Westphal 1998). Although assuming a linear link between 
demographic parameters (here, carrying capacity) and pre-
dicted habitat suitability is the only practicable approach 
given general data limitations, this is not fully supported by 
empirical fi ndings and further research is required in this 
fi eld (Gallien et al. 2010).   

 Challenges in species distribution modelling 

 By integrating predictions of habitat suitability made by cor-
relative species distribution models with spatially explicit, 
dynamic population models we are able to overcome some 
limitations associated with SDMs. For example, by relax-
ing the equilibrium assumption such combined models 
allow the prediction of transient population response to 
environmental change. However, spatially explicit popula-
tion models do not solve all problems associated with cor-
relative SDMs in global change context. Most importantly, 
we still assume constant species-environment relationships 
(niche conservatism, Pearman et al. 2008). Th is assumption 
underlies both the correlative model producing habitat suit-
ability maps and it also underlies the constant demographic 
rates in the population model. Th us, spatially explicit popu-
lation models like our black grouse IBM are only valid as 
long as environmental change only shifts the environmental 
conditions in space. Changes in biotic interactions as well 
as ecological and behavioural adaptations will violate this 
assumption of niche conservatism. Also, demographic rates 
might change in response to changing environmental condi-
tions, for example if environmental stress regimes change. As 

  Figure 5.     Eff ects of diff erent uncertainty components on probabil-
ity of extinction for the years 2001 (current climate), 2050 and 
2100. Symbols indicate mean values, errors bars show 99 percent 
confi dence interval.  



600

  

Figure 6.     Consensus on black grouse presence for years 2001 (top), 2050 (centre) and 2100 (bottom); calculated as the fraction of all 
simulations (n  �  1215) predicting black grouse to be present. (Note that zero percent consensus on presence equal 100 percent consensus 
on black grouse absence.)  
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 Conclusions 

 Integrating correlative species distribution models into 
spatially explicit population models for predictions of 
large-scale range dynamics allows for a more direct, multi-
faceted view of complex, spatiotemporal species ’  response to 
environmental change and related extinction risks. However, 
without explicit assessment of robustness of predictions, for 
example by means of sensitivity analysis, the task remains of 
more theoretical nature. Th e merit of developing dynamic 
population models for climate impact studies only becomes 
apparent and the eff ort justifi ed when this undertaking is 
accompanied by explicit investigation of sensitivity and 
robustness of the results. Th is substantially increases the 
confi dence in range predictions and, as a more direct ben-
efi t, increases our mechanistic understanding of the studied 
ecological system and the expected population response. 
Further research is needed to provide general guidelines 
for models predicting climate-induced range dynamics. 
Th ereby, challenges remain for both static and dynamic 
modelling components and include, for example, the choice 
of appropriate SDM algorithms, the role of land use and cli-
mate change, model structure and complexity, or the design 
of robustness analysis. Addressing these challenges will help 
to establish this comparably new avenue of climate impact 
assessment as a feasible and reliable tool.                
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