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Predicting to new environments: tools for
visualizing model behaviour and impacts
on mapped distributions
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INTRODUCTION

Predictive species distribution models (SDMs, Guisan &

Zimmermann, 2000; Elith & Leathwick, 2009) have become a

prominent technique in conservation biogeography and are

increasingly used as prediction tools for environmental change

forecasts and invasive species research (Franklin, 2010).

Numerous SDM algorithms exist with varying degrees of

model complexity (Elith et al., 2006; Heikkinen et al., 2006).

Several studies have shown that these algorithms can predict

substantially different future potential ranges even if current

predictions are largely congruent (Thuiller, 2004; Buisson

et al., 2010). Explanations for varying behaviour usually point

to the extent to which the environmental range was covered by

the training data and to the specific assumptions made by each

algorithm when extrapolating beyond that range (Thuiller

et al., 2004; Pearson et al., 2006; Elith & Graham, 2009).

Williams & Jackson (2007) argued that data limitations may

impede extrapolation to novel environments because the

species’ niche may not be fully represented by data (here,

termed ‘truncated niches’) and, depending on the direction of

environmental change, currently unobserved portions of the

niche may open up. Fitzpatrick & Hargrove (2009) contended

that predictions should not be attempted to environmental

conditions without analogues to the combinations under

which the model was calibrated, or at least that maps should

indicate where extrapolation has occurred.

Useful ideas are emerging for probing models and predic-

tions, enabling users to understand model behaviour in novel

space. For instance, environmental spaces have been compared

using principal component analyses and metrics summarizing

differences between niches (Broennimann et al., 2007; Warren

et al., 2008; Medley, 2010); impacts of sample design on

environmental and niche coverage have been explored and

related to models and their predictions (Albert et al., 2010);

and methods for mapping novel environments in geographic

space have been suggested (Williams et al., 2007; Platts et al.,

2008; Elith et al., 2010). Here, we add to these by focussing on

the issue of combinations of variables that are within the

sampled range of each predictor treated individually, but are

nevertheless outside of the sampled environmental space

(Fig. 1, hatched areas). These tend to be overlooked in

visualization methods (cf. Fitzpatrick & Hargrove, 2009). For

instance, partial dependence functions (i.e. plots of the fitted

functions that show the effect of a variable on the response

after accounting for the average effects of all other variables in

the model) are plotted along the full gradient of each variable

represented in the data, regardless of the coverage along that
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ABSTRACT

Data limitations can lead to unrealistic fits of predictive species distribution

models (SDMs) and spurious extrapolation to novel environments. Here, we want

to draw attention to novel combinations of environmental predictors that are

within the sampled range of individual predictors but are nevertheless outside the

sample space. These tend to be overlooked when visualizing model behaviour.

They may be a cause of differing model transferability and environmental change

predictions between methods, a problem described in some studies but generally

not well understood. We here use a simple simulated data example to illustrate

the problem and provide new and complementary visualization techniques to

explore model behaviour and predictions to novel environments. We then apply

these in a more complex real-world example. Our results underscore the necessity

of scrutinizing model fits, ecological theory and environmental novelty.
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gradient of other environmental dimensions. MaxEnt’s mul-

tivariate environmental similarity surface (MESS, Elith et al.,

2010) takes a related box-like or envelope viewpoint by

analysing environmental coverage one variable at a time and

reporting as novel those conditions outside the environmental

hyper-dimensional rectangle. However, not all multivariate

combinations of the environmental conditions may be repre-

sented in the data. We define those parts of the environmental

space that are within that box but nevertheless outside the

sample space as ‘implied sample space’ (hatched areas of

Fig. 1). Here, we show that existing methods can fail to clarify

why predictions differ, and we provide new and complemen-

tary visualization techniques that will be relevant for many

species modelling problems.

DEMONSTRATING PREDICTION PROBLEMS:

SIMULATED SPECIES

Figure 1 illustrates three situations that can arise when

sampling in geographic space (Williams & Jackson, 2007;

Albert et al., 2010). For species 2 and 3, no samples exist for

parts of the environmental niche or for the niche edges. These

may not be problematic if the intention is simply to model the

distribution of that species in the sampled space, but as soon as

models to these data are used for prediction to new times and

places which might contain environments outside of the

training sample, difficulties arise.

To simulate data representing the situations of Fig. 1, a

virtual species (Zurell et al., 2010) was created (using logistic

regression) that exhibited a unimodal response to temperature

and a positive linear response to percent woodland cover

(Fig. 2a; for details see Appendix S2 in Supporting Informa-

tion). The entire simulation study was built in r (R Develop-

ment Core Team, 2010), and we provide code in Appendix S1.

For each situation, 1000 samples were drawn and converted to

binary observations by using the simulated response (varying

from 0 to 1) as the success rate for one sample of the binomial

distribution. For species 1, samples cover the entire environ-

mental space, while for species 2 (truncated niche), the samples

cover the full univariate range of each environmental variable

individually, but combinations of the two are missing

(Fig. 2a). SDMs were fitted to these samples using generalized

additive models (GAMs) with cubic smoothing splines, four

degrees of freedom and no interactions, and boosted regression

trees (BRTs) with tree complexity of 1 (tree stumps; note that

in our examples higher tree complexity results in similar

extrapolation behaviour). We chose these methods as examples

of the range of current methods, spanning standard regression

techniques to advanced machine learning methods (for

overviews see Elith et al., 2006; Heikkinen et al., 2006). The

models were then used to predict across the full environmental

space spanned by the environmental gradients of the individual

predictors, meaning that for species 2, predictions were made

to new combinations of variables.

For species 1 (entire niche sampled), both methods were

successful in fitting the true response (Fig. S1). Because the

environmental niche of the species was truncated in the

training data for species 2, predictions for the unsampled

combinations required extrapolation. As a result of the way

our cubic splines and regression trees extrapolate, GAM

continued the fitted trend to ‘unknown’ sites, while BRT

predicted a constant value from the last ‘known’ site leading to

inaccurate model predictions in those parts of the unsampled

environment space with high woodland cover, and particularly

those that also have lower or higher than optimal temperatures

(Fig. 2d; Fig. S2). The latter is not obvious from the usual

partial dependence plots (Fig. 2b) because these are derived at

average values of other predictors, for which this model

performs reasonably well. Similar extrapolation errors also

occur if niche edges coincide with the limits of the recorded

environmental space (species 3; Fig. S3).

NEW TOOLS FOR VISUALIZATION

The simulation study was simple, and use of three-dimensional

plots (e.g. Fig. 2d) was sufficient to demonstrate the model fit

and its implications for predictions to unsampled combina-

tions of predictors (cf. Fig. S2). In most situations, though,

models have more than two covariates, and predictions are also

mapped. Hence, we suggest two new tools that will highlight

predictions to new combinations of variables.

First, we propose to ‘inflate’ conventional response curves

(partial dependence plots) by visualizing the effects of all

variables in the model over their full range, and at the same

time plotting the available data in that space. Basically, inflated

Figure 1 Conceptual diagram illustrating three situations how

species niche may be represented in sampled environmental space

(dotted ellipse): (1) a species niche is entirely represented by

sample space (species 1) (2) the niche is ‘truncated’ because

samples do not exist for part of one or more environmental

gradients (species 2) and (3) the edge of the niche abuts the edge

of the sampled space, and no samples exist beyond it (species 3).

The hatched square represents the ‘implied’ sample space that is

implicitly assumed to be known when focussing on the sampled,

univariate ranges of all environmental predictors individually

instead of explicitly focussing on the multivariate combinations of

environmental predictors represented in the sample.
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response curves are an abstracted 2D version of multidimen-

sional response surfaces. These show the effect of a variable on

the response while accounting not only for the average effects

of the other variables but also for minimum and maximum

(and median and quartile) values. Thus, the response plot for

any one variable consists of many response curves representing

all possible combinations of all other variables in the model

(for code see Appendix S1; for detailed description see

Appendix S3). Because the number of combinations grows

exponentially with the number of variables and restricts

computational feasibility, we use Latin hypercube sampling

to reduce dimensionality for large numbers of variables. This is

simply a means to efficiently sample a representative subset

from all possible combinations of environmental predictors

(Carnell, 2009).

Second, we propose to extend the idea of MESS maps by not

only focussing on the environmental range of predictors

individually but also on combinations of environmental

predictors. By that, we are able to identify those parts of the

environmental space that are within the sampled, univariate

range of the individual predictors but nevertheless represent

new multivariate combinations of these (‘implied sample

space’ of Fig. 1). This ‘environmental overlap’ (or ‘environ-

mental gap’ if one wants to emphasize that certain parts of the

prediction space may not be represented in the sample space)

can be determined by splitting the training or reference data

into a specified number of bins where each bin holds a unique

combination of environmental predictor values. Any bins in

test or prediction data that do not overlap with these reference

bins are defined as novel environments. An environmental

overlap mask can be used to highlight predictions where the

model must extrapolate to novel environments (cf. ‘null

prediction’ in Fitzpatrick & Hargrove, 2009), for example,

within inflated response curves and in prediction maps (for

code see Appendix S1; for detailed method description see

Appendix S3). Note that a bin number of one equates to the

border that distinguishes novel space (negative values) in

MESS maps.

We illustrate the usefulness of these two methods for black

grouse (Tetrao tetrix) in Switzerland (Zurell et al., 2011; for

more details see Appendix S4). Conceptually, the problem is

slightly different to that of the simulated species. Clearly, we do

not know the true niche of the species. But we know the

environmental space covered by the sample and could suppose

that for predictions to other times or places, there may be

combinations of environments not present in the training data.

Hence, we are interested in how the model predicts to such new

combinations outside the training data space (as we were for the

simulated species). Again, we used a GAM with cubic smooth-

ing splines, four degrees of freedom and no interactions and

BRT with tree complexity of 1 to estimate the species–

environment relationship. We included six environmental

predictors that covered large gradients, yet only portions of

all possible combinations were present (Fig. S4). In conse-

quence, GAM and BRT exhibited distinctly different extrapo-

lation behaviour in the unsampled parts of the multivariate

environmental space, particularly in those parts with high

temperatures. These differences were not evident in conven-

tional response plots plotted on the scale of the response, but

were nicely represented by inflated response curves (Fig. 3;

(a) (b)

(c) (d)

Figure 2 Simulated data example for

species 2 with truncated niche. (a) True

response surface. (b) Partial dependence

plots for generalized additive model

(GAM) and boosted regression tree (BRT).

(c, d) show fitted response surfaces for

GAM and BRT. Grey dots at P = 0 in

panels (a, c, d) represent sampled

absences, and black dots at P = 1 represent

sampled presences.
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Figs S5 & S6). We see the advantages of the inflated curves as:

(1) they are explicit about the shape of the response at different

values of other variables. While in additive models this might be

deduced, especially if partial plots are fitted on the scale of the

link function, it requires some careful thought and is much

more apparent with our methods, especially in the case of

truncated responses; (2) they make clear the responses if

interactions are included in the models. The increasing

popularity of methods that can optionally fit interactions if

detected in the data (e.g. tree-based methods), of ensembles

that might include such models and of all subsets regression

where interactions are potentially allowed means that model

structure might not be superficially apparent. We believe that

this increasing complexity of model structure requires tools that

allow exploration and understanding. Here, we believe that

black grouse response fitted by GAM is more plausible than that

fitted by BRT. From an ecological perspective, it seems more

intuitive to assume that species response to a bioclimatic

variable such as mean annual temperature gradually decreases

towards physiological limits (Thuiller et al., 2004).

However, different extrapolation behaviour will only con-

stitute a problem to model transferability if models are used to

extrapolate to places with non-analogue environments in

which currently unobserved portions of the environmental

niche become available for prediction (Williams & Jackson,

2007; Fitzpatrick & Hargrove, 2009; Dobrowski et al., 2011).

We demonstrate in Fig. S7 that plotting fitted values along

each variable and comparing those obtained for training and

prediction data can provide useful insights. Mapping these

predictions and using environmental overlap masks to explic-

itly show predictions in sampled and non-analogue environ-

mental spaces emphasizes where differences in predictions are

because of extrapolation behaviour of the models. Figure 4

shows the mapped predictions of Swiss black grouse occur-

rence probability from GAM and BRT models. While predic-

tions for the current environment are similar for GAM and

BRT (year 2001; Fig. 4a,e), the mapped predictions for the

year 2100 under climate change differ substantially (Fig. 4b,f).

Using environmental overlap masks (with default number of

five bins per environmental variable), we can distinguish

between predictions in geographic space that are within the

sampled environmental space (Fig. 4c,g) where the model is,

in fact, interpolating and predictions to novel environmental

space (i.e. to environmental conditions beyond the sampled

ranges of the variables as in MESS maps, and to novel

combinations of environmental variables; Fig. 4d,h) where the

model is, in fact, extrapolating. For our Swiss black grouse

example, we see that main differences between GAM and BRT

predictions for the scenario of climate change indeed occur in

those parts of the geographic space that exhibit novel

environmental conditions compared to the sample space.

We do not intend these results as general advice about SDM

algorithms. GAMs will not always extrapolate well (e.g. Elith

et al., 2010), and BRTs might fit responses that extrapolate in

ecologically realistic ways. The important issue is that using

SDMs to predict to unsampled parts of the environmental space

(a)

(b)

(c)

Figure 3 Swiss black grouse example. (a) Shows the partial

dependence of back grouse occurrence to mean annual

temperature for generalized additive model (GAM) and boosted

regression tree (BRT). (b–c) Show the respective inflated response

curves. Light grey lines and dotted dark grey lines depict the

temperature effects over the full range of the other predictors

(minimum, maximum, median, mean and quartiles). Light grey

lines indicate combinations of environmental predictors that were

observed in the sample space, while dotted dark grey lines indicate

extrapolations to novel, unsampled combinations. The plots

represent n = 150 Latin hypercube samples from all possible

combinations of environmental predictors.

Predicting to new environments
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is inherently risky, and uncertainty in models as well as in

predictions and maps needs to be carefully assessed (Rocchini

et al., 2011). The plots and maps presented here were useful for

visualizing the environmental space in more than one dimension

and for understanding the predicted responses in this space.

Plausibility of SDM fits needs to be judged individually for any

species modelled and should comply with ecological theory and

prior knowledge on the species (Guisan & Thuiller, 2005; Austin,

2007). As environmental variables generally correlate, linearly

and nonlinearly, we will rarely find all possible combinations in

any one region (or the world). Also, species may be precluded

from portions of their fundamental niche because of dispersal

limitations, disturbance or biotic interactions (Colwell & Rangel,

2009). In invasive species research, it has also been demonstrated

that the realized niche in the native and invaded range may differ

(Broennimann & Guisan, 2008). Extrapolation behaviour may

be improved by model smoothing (Elith et al., 2010) or by

forcing the predicted probabilities to gradually approach zero

outside observed environment (Thuiller et al., 2004). More

research on the effect of including interactions in models used

for extrapolation is needed; it may complicate extrapolation, and

alternate means of representing the ecological response (e.g. by

careful construction of predictors) might be preferable.

SUMMARY

Species distribution models would yield reliable predictions

under environmental change, if the entire niche was encom-

passed by data, meaning that samples exist for all environ-

mental conditions the species can occur in. However,

truncated or edge niches are probably common, as not all

possible environmental combinations are currently present.

This may lead to erroneous predictions when extrapolating to

novel environments, depending on how the model extrapo-

lates. Thus, whenever prediction is the aim, we need to rule out

unrealistic extrapolation behaviour of our models or at the

very least indicate where extrapolation has occurred. The tools

we provide here help to explore cases that were previously

difficult to visualize.
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iller, W. & Sykes, M.T. (2006) Methods and uncertainties in

bioclimatic envelope modelling under climate change. Pro-

gress in Physical Geography, 30, 1–27.

Medley, K.A. (2010) Niche shifts during the global invasion of

the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae),

revealed by reciprocal distribution models. Global Ecology

and Biogeography, 19, 122–133.

Pearson, R.G., Thuiller, W., Araújo, M.B., Martinez-Meyer, E.,
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Valverde, A., Ricotta, C., Bacaro, G. & Chiarucci, A. (2011)

Accounting for uncertainty when mapping species distribu-

tions: the need for maps of ignorance. Progress in Physical

Geography, 35, 211–226.

Thuiller, W. (2004) Patterns and uncertainties of species’ range

shifts under climate change. Global Change Biology, 10,

2020–2027.

Thuiller, W., Brotons, L., Araújo, M.B. & Lavorel, S. (2004)
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article:

Figure S1 Response surfaces for simulated species 1.

Figure S2 Fitted values for simulated species 2.

Figure S3 Response surfaces for simulated species 3.

Figure S4 Environmental scatterplots for black grouse occur-

rences.

Figure S5 Inflated response curves of GAM for black grouse

occurrence.

Figure S6 Inflated response curves of BRT for black grouse

occurrence.

Figure S7 Fitted values for black grouse occurrence.

Appendix S1 Code for simulated data and visualisation tools.
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Appendix S2 Supporting information for simulated data

example.

Appendix S3 Method descriptions for visualisation tools.

Appendix S4 Supporting information for Swiss black grouse

example.
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rials are peer-reviewed and may be re-organized for online

delivery, but are not copy-edited or typeset. Technical support

issues arising from supporting information (other than missing

files) should be addressed to the authors.
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