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ABSTRACT

Aim We assess main ecological determinants affecting the comparative perfor-

mance of macroecological models (MEMs) that model species richness directly,

and stacked species distribution models based on stacking probabilities

(pS-SDMs) and binary predictions (bS-SDMs). Specifically, we aimed to under-

stand how statistical effects such as prevalence and environmental heterogeneity

are entangled with species’ ecology in Swiss avian assemblages.

Location Switzerland.

Methods We tested for statistical and ecological effects on overprediction and

underprediction by regressing species richness residuals against community-

averaged values of prevalence, functional traits and functional dissimilarity.

Further, we defined bird functional groups through hierarchical clustering and

compared accuracy of species richness predictions between groups to under-

stand the differences between model types and ecological determinants thereof.

Last, we tested how accuracy of species assemblages constructed from bS-SDMs

relates to species’ functional characteristics.

Results Underprediction of high diversity sites by pS-SDMs and MEMs was

mainly explained by prevalence, whereas overprediction of low diversity sites

was strongly affected by diet and habitat traits, and increased with functional

dissimilarity. Model performances varied strongly between functional groups

with more accurate and less biased predictions for generalist species groups.

Critically, overprediction bias in richness predictions by bS-SDMs was uncorre-

lated with assemblage prediction success.

Main conclusions The reliability of all community models tested here strongly

depended on functional species’ characteristics related mainly to diet, foraging

and breeding habitat. This underlines the need to incorporate all relevant and

species-specific or functional group-specific ecological filters in the models.

Improved prediction accuracy of species richness will require finer-resolved

environmental predictors that better describe available niche space and account

for specific spatial and resource requirements of different species. More

research is needed to understand the relationship between accuracy of species

richness and species assemblage predictions in bS-SDMs as well as the role of

biotic interactions.
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INTRODUCTION

Species richness is one of the most important and the most

widely used biodiversity measure in basic and applied ecol-

ogy. Different approaches exist for modelling species richness

ranging from (semi-)mechanistic (Reu et al., 2011; Mokany

et al., 2012) to more empirical approaches (Ferrier & Guisan,

2006; Guisan & Rahbek, 2011). Clearly, the majority of stud-

ies rely on statistical methods because these are more easily

applicable for large numbers of species and with little or no

information on species’ biology. Generally, we may distin-

guish (1) community-level and (2) species-level approaches

for predicting species richness (Ferrier & Guisan, 2006). (1)

Macroecological models (MEMs) directly model community

properties such as species richness from a set of predictors

(Ferrier & Guisan, 2006; Guisan & Rahbek, 2011). (2) In

stacked species distribution models (S-SDMs), we first pre-

dict the distribution of single species using statistical species

distribution models (Guisan & Zimmermann, 2000) and

then combine these single-species predictions to a commu-

nity-level estimate (Dubuis et al., 2011; Guisan & Rahbek,

2011). Two major stacking procedures exist, namely stacking

through summing probabilities (pS-SDM) and stacking

through summing binary predictions (bS-SDM). An advan-

tage of bS-SDMs is that they directly yield local species

assemblage predictions, which is not possible using MEMs

and pS-SDMs. Unfortunately, however, most previous stud-

ies point to lower prediction accuracy in bS-SDMs (Dubuis

et al., 2011; D’Amen et al., 2015b).

MEMs and pS-SDMs tend to behave and perform very

similar (Dubuis et al., 2011; Calabrese et al., 2014). Typical

patterns are overestimation at sites of low species richness

and underestimation at sites of high species richness. Thus,

although they are able to correctly predict mean species rich-

ness and generally show symmetric prediction errors, their

predictions are biased at high and low diversity sites (Fig. 1a,

prediction bias I; Calabrese et al., 2014). By contrast, bS-

SDMs tend towards overpredicting species richness, which is

associated with generally higher and asymmetric prediction

errors compared to MEMs (Fig. 1a, prediction bias II; Dubuis

et al., 2011; Calabrese et al., 2014), and may be affected by

the choice of threshold for making binary predictions (Cord

et al., 2014; D’Amen et al., 2015a). Ecological reasons for

these overprediction patterns could be missing information

on biotic interactions, dispersal limitations and historical fac-

tors (Guisan & Rahbek, 2011). However, Calabrese et al.

(2014) demonstrated by means of probability theory that bS-

SDMs should quite generally be biased towards overpredic-

tion, independent of ecological effects.

To our knowledge, no study has yet attempted to under-

stand and disentangle statistical and ecological effects on pre-

diction biases in S-SDMs and MEMs (Fig. 1). Potential

(a)

(c)

(b)

Figure 1 Schematic representation of

components of prediction accuracy in

species richness models (a), different

statistical modelling approaches for

predicting species richness (b), and

statistical and ecological factors affecting

prediction accuracy (c). We investigate

ecological and statistical effects on

prediction bias I by analysing species

richness residuals across communities,

and prediction bias II by analysing

prediction error (NRMSE) in different

functional groups. 1Reducible through

adequate predictor choice. 2Non

reducible, intrinsic property of species.
3Potentially affected by observer bias.
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rather statistical effects explaining the prediction bias I (i.e.

overestimating low species richness and underestimating high

species richness) in pS-SDMs and MEMs are (1) prevalence,

as well as (2) environmental heterogeneity and regression

dilution (Calabrese et al., 2014). First, highly abundant and

very rare species are difficult to model in both SDMs

(McPherson et al., 2004; Santika, 2011) and MEMs (Jetz &

Rahbek, 2002; Lennon et al., 2004) because of problems in

identifying their dominant environmental determinants. Sec-

ond, environmental heterogeneity may cause problems in

identifying the specific habitat preference of species or in

estimating the actual effect strength of predictors (McInerny

& Purves, 2011; Calabrese et al., 2014). This may arise from

inadequate resolution of the environmental predictors (re-

gression dilution), or because limited sets of environmental

predictors used do not adequately capture the ecology of all

species simultaneously (Steinmann et al., 2009).

Such effects may be entangled with ecological characteris-

tics of the modelled species, and their magnitude may differ

between different species or functional groups that show

particular adaptations to environmental constraints as mani-

fested by their physiology and life history characteristics

(Fig. 1c). Additionally, biotic interactions among species

may greatly influence local community assemblage and

should thus affect the accuracy of species richness predic-

tions. For example, using a functional group approach,

Steinmann et al. (2009) showed that MEMs of trees showed

higher accuracy than MEMs of shrubs or herbs, which the

authors ascribed to the high competitive ability of trees. Fur-

thermore, it is not clear what drives the often-reported sys-

tematic overprediction in bS-SDMs (prediction bias II)

compared to pS-SDMs and MEMs. Dubuis et al. (2011),

Guisan & Rahbek (2011) suggested that systematic overpre-

diction in bS-SDM arises, at least in part, from biotic inter-

actions that restrict species co-occurrence, which was

recently supported by simulated data (Thuiller et al., 2015).

Additionally, the importance of biotic interactions may differ

between functional groups. For example, generalist species

may avoid interspecific competition using resources from

different parts of their fundamental niche (Colwell &

Fuentes, 1975; Martin et al., 2004). We, thus, hypothesize

that bS-SDMs perform more similarly to pS-SDMs and do

not exhibit systematic (or show less) overprediction for spe-

cies groups with comparably weak biotic interactions, such

as for example generalist species. As an effect, we expect bS-

SDMs to predict species assemblages more accurately in such

situations.

Here, we quantify statistical and ecological effects on pre-

diction biases in S-SDMs and MEMs using a functional,

trait-based approach (Fig. 1). Thereby, the main focus lies

on species richness prediction. However, because the main

advantage of bS-SDMs is the ability to construct species lists,

we also assess the assemblage prediction success in bS-SDMs.

Specifically:

1. We evaluate statistical and ecological effects on prediction

bias I (Fig. 1a) by studying spatial patterns of species

richness residuals and assess the effects of threshold choice,

environmental filtering, community mean prevalence and

community mean traits. By this, we try to understand

whether prediction bias I may be explained by species charac-

teristics that, for example, relate to subscale habitat require-

ments.

2. We compare prediction errors of the different model

types to assess the magnitude of prediction bias II in bS-

SDMs. To this end, we model all species together or separate

them into functional groups to disentangle the main ecologi-

cal determinants of prediction error in species richness pre-

dictions. By this, we aim at identifying groups of species that

are easier or more difficult to model by MEMs and S-SDMs

and to understand the reasons behind these differences.

3. We repeat steps 1 and 2 for the analysis of species assem-

blage prediction success in bS-SDMs to understand the

effects of species ecological characteristics on the ability of

bS-SDMs to construct meaningful species lists.

This study is, to our knowledge, the first to rigorously test

for and disentangle the relative importance of statistical and

ecological effects on species richness models. However, such

insights are prerequisite for deriving guidelines for the ade-

quate use of S-SDMs and MEMs in predicting species rich-

ness and community assemblages. As study system, we use

Swiss breeding birds, for which comprehensive and high-

quality data on both distribution (Schmid et al., 1998) and

environmental (including habitat) variables exist (Zurell

et al., 2012). Also, detailed information on species’ biology,

especially habitat and diet preferences, is available (Swiss

Ornithological Institute, Pearman et al., 2014).

METHODS

Species and environmental data

Presence–absence data of birds at a resolution of 1 9 1 km

were obtained from the Swiss Breeding Bird Atlas recorded

1993–1996 (Schmid et al., 1998). Within each cell, breeding

birds were recorded in usually three visits (two above the

tree line) with a simplified territory mapping method. Over-

all, approximately 90% of all species present were detected

within 1 km2 (K�ery & Schmid, 2006). Because very rare spe-

cies are difficult to model using single-species SDMs (Breiner

et al., 2015), we included only species with a prevalence of at

least 5% in the data (n = 104 species of the original 173 spe-

cies; 2709 cells). This step was necessary to not bias the

underlying SDMs unfairly and thus not bias the comparison

of S-SDMs and MEMs.

Predictor variables including climatic, topographic and

habitat factors were also obtained at a resolution of

1 9 1 km. Climatic data were compiled by the Swiss Federal

Research Institute WSL (Zimmermann & Kienast, 1999) and

included 11 predictors: long-term averages from the period

1961–1990 on mean summer moisture index (precipitation –
potential evapotranspiration), growing degree days above

0 °C and annual values as well as values for summer and
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winter for the variables precipitation sum, mean temperature

and potential solar radiation (Table S1 in Supporting Infor-

mation). Topographic data were derived from a digital ter-

rain model developed by the Swiss Federal Statistical Office

and included also 11 predictors: elevation (minimum, med-

ian, maximum and range), slope, aspect (sine, cosine, Beers

index; Beers et al., 1966) as well as secondary terrain attri-

butes, such as the stream power index and the topographic

wetness index. Land use and vegetation data were compiled

from Swiss land use statistics 1992–1997 (GEOSTAT). Over-

all, we obtained 14 land use categories aggregated from the

74 basic categories (Table S1).

Trait data

Species’ ecological traits were obtained from the Swiss

Ornithological Institute and from Pearman et al. (2014). The

five trait groups describe the trophic niche (food type, acqui-

sition behaviour and substrate from which food is taken),

habitat niche (foraging and breeding habitat), nesting posi-

tion, migratory status and body size (Table S2). All traits

except body size were binary. Most traits describing the

trophic and the habitat niche were non-exclusive (species

could have preference for several food types), except nesting

position and migratory status, which were exclusive. Log-

transformed body size was used as surrogate for species’

space and resource requirements and was continuous.

Model fitting

We used 70% of the distribution data for model training, leav-

ing 30% randomly selected holdout data for evaluation. Prior

to modelling, all predictor variables were standardized. To

reduce multicollinearity problems, in each model, we retained

only predictor variables with bivariate Spearman correlations |
r| ≤ 0.7 giving preference to variables that were more mean-

ingful to the species in terms of AIC (Dormann et al., 2013).

Single-species SDMs were fitted with a binomial error distri-

bution and logit link function. MEMs were fitted with a Pois-

son error distribution and log link. We used three different

algorithms: generalized additive models GAM, multivariate

adaptive regression splines MARS (Elith & Leathwick, 2007)

and boosted regression trees BRT (Elith et al., 2008). GAMs

were fitted with nonparametric cubic smoothing splines with

up to four degrees of freedom. We estimated BRTs with a tree

complexity of 2, a bag fraction of 75% and a variable learning

rate such that 1000–3000 trees were fitted. The spatial autocor-
relation of the residuals of SDMs and MEMs was assessed with

a permutation test for Moran’s I statistic with 1000 random-

izations and spline correlograms, both computed in a radius

of up to 20 km (Dormann et al., 2007).

Species richness predictions

We used three different methods for predicting species rich-

ness. 1) MEMs yield direct predictions of species richness. 2)

In pS-SDMs, the probabilities of occurrence predicted by

SDMs were summed for all sites. 3) In bS-SDMs, we first

converted the probabilistic SDM output into presence–ab-
sence predictions and subsequently summed the presences

for all sites. Because the threshold choice has been reported

to affect prediction bias II (Cord et al., 2014), we used three

similarly robust thresholds: species-specific sampling preva-

lence, TSS-maximization and sensitivity-specificity equality

thresholds (Liu et al., 2005).

Species richness predictions were validated against the

30% holdout data. (1) We calculated the overall deviation of

predicted from observed data as the normalized root mean

square error, which is

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðpredicted - observedÞ2=n

q

ðmaxðobservedÞ � ðmin observedÞÞ

where predicted and observed stand for the plot-by-plot

observed and predicted species richness, and the range of

observed biodiversity among all plots being used to standard-

ize the errors. NRMSE served as proxy for prediction bias II

because systematic overprediction will inflate NRMSE

(Fig. 1a).

(2) In bS-SDMs, we additionally evaluated assemblage pre-

diction success for each site, the proportion of correct pre-

dictions, which is derived from a confusion matrix (Pottier

et al., 2013)

Assemblage prediction success ¼ aþ d

N

with a being the sum of all species correctly predicted as pre-

sent and d the sum of all species correctly predicted as

absent and N the total number of species.

Bias and trait analysis

First, we investigated species richness residuals and assessed

to what extent community mean prevalence, community

mean traits and mean functional dissimilarity can explain

overestimation and underestimation of local richness in

MEMs and S-SDMs. Thereby, mean functional dissimilarity

served as indicator for the strength of the environmental fil-

ter. To this end, functional distances in trait space were cal-

culated by a mixed-variable coefficient that generalizes

Gower’s metric of distance (Pavoine et al., 2009). A null

model randomizing the functional distances among species

while controlling for species richness was used to calculate

the standard effect size MFDSES for each community which

is the rank of the observed mean functional distance within

the null distribution (n = 999) divided by n + 1. MFDSES

varies between 0 and 1 with 0 indicating perfectly similar

species and thus environmental filtering and 1 indicating

completely dissimilar species and thus limiting similarity

(Weiher & Keddy, 1999). Then, we regressed community

mean prevalence, mean traits and MFDSES against all species

richness residuals. Next, we separately analysed positive and
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negative residuals to distinguish between factors mainly caus-

ing overprediction from those causing underprediction. We

evaluated the independent effects using hierarchical parti-

tioning (Chevan & Sutherland, 1991). Because of the high

number of traits used, we applied hierarchical partitioning to

models using groups of traits instead of single-trait predic-

tors. Analogously, we regressed per-site assemblage predic-

tion success of bS-SDMs against community mean

prevalence, mean traits and MFDSES.

Second, we evaluated relative model performance of

MEMs and S-SDMs for separate bird functional groups. Spe-

cies were grouped by a hierarchical cluster analysis using spe-

cies pairwise functional distances. An average linkage strategy

was used for clustering, which best approximated the original

dissimilarities. Correlation between the original distance

matrix and the cophenetic distance matrix from the dendro-

gram was assessed using the Mantel statistic (r = 0.7726; P-

value <0.0001 with 9999 randomizations). The dendrogram

was pruned to form groups such that each group contained

at least five species resulting in seven functional groups

(Fig. S1, Tables S3 and S4). Then, MEMs and S-SDMs were

calculated for each functional group and compared with

respect to NRMSE. For bS-SDMs, we additionally calculated

mean assemblage prediction success (i.e. assemblage predic-

tion success averaged over all sites).

For linking model performance to functional group char-

acteristics, we estimated simple single-trait linear regressions

and adjusted significance levels according to Holm’s method

(Holm, 1979). Additional to group mean traits, we calculated

niche sizes for each functional group and each trait category,

for example dietary niche size, as proxy for relative special-

ization of different groups. To this end, we ran principal

component analyses for the separate trait categories (except

morphology, nesting position and migratory status as these

groups contained only a single trait or exclusive traits) and

calculated niche size for each functional group and trait cate-

gory as the area of the inertia (covariance) ellipse that

describes the point cloud covered by each functional group

within the first two principal axes.

All analyses were carried out within the free environment

for statistical computing R (R Development Core Team,

2014).

RESULTS

SDMs and MEMs showed fair to excellent discriminatory

power and good calibration (Fig. S2). Variable selection and

variable importance in single-species SDMs and MEMs dif-

fered slightly between algorithms and methods with stronger

differences among predictor sets of increasing complexity

(Fig. S3). Spatial autocorrelation was generally low although

often significant with Moran’s I ranging between 0 and 0.15

with mean of 0.06. Spline correlograms showed mean spatial

dependence of 3.3 km, but were not significant (Fig. S4).

Overall, we consider the dataset as valid for the S-SDM and

MEM comparison.

General patterns

As expected, MEMs and pS-SDMs yielded similar predictions

with overprediction of low and underprediction of high spe-

cies richness (Fig. 2a,b) whereas bS-SDM predictions exhib-

ited general overprediction, although overprediction

decreased towards high species richness (Fig. 2c). Species

richness showed a decreasing relationship with elevation

(Fig. 2d-f). This general pattern was well captured by all

methods although bS-SDMs generally overpredicted species

richness, whereas mean predicted species richness of pS-

SDMs and MEMs showed almost perfect correspondence

with mean observed species richness along elevation.

The systematic overprediction in bS-SDMs was reflected

by NRMSE, with pS-SDMs and MEMs performing very simi-

larly with low overall error (NRMSE = 0.11) and higher

errors for bS-SDMs (NRMSE = 0.18–0.21). The different

thresholds to convert probabilities into binary predictions for

bS-SDMs yielded small but significant differences in NRMSE.

The sensitivity–specificity equality threshold showed lowest

NRMSE (and, thus, lowest prediction bias II) and was subse-

quently used for all further analyses. Algorithmic choice had

almost no effect, and, in the following, we present results

based on simple average consensus.

Effect of prevalence and traits on species richness

residuals

Mean functional distance and community-averaged preva-

lence and traits explained up to 42% of residual variation in

species richness predictions with very similar effects on

MEMs, pS-SDMs and bS-SDMs (Table S5). To explain what

drives overprediction and underprediction (prediction bias I),

we separately analysed effects on positive and negative resid-

uals. Because of the strong overprediction and thus low

amount of negative residuals in bS-SDMs, such comparison

was not meaningful for bS-SDMs because of the overriding

effect of prediction bias II. Hence, we only report the effects

on richness overprediction (explained variance 37–38%) and

underprediction (explained variance 31–35%) in MEMs and

pS-SDM below, which were largely congruent.

Prevalence had no effect on richness overprediction in pS-

SDMs and MEMs, while it well explained underprediction,

with a consistently positive effect (Fig. 3, Table S5). Thus,

underprediction in communities with more wide-ranging

species was reduced. Additionally, foraging and breeding

habitat as well as diet explained variation in underprediction

patterns. Specifically, underprediction was more severe in

communities breeding in banks, coniferous forests and urban

areas or foraging in dry grasslands. Patterns in overprediction

were largely explained by traits related to diet, foraging and

breeding habitat with minor effects from nesting position and

mean functional distance. Here, overprediction was more sev-

ere in places with more carnivores, especially those that feed

on other large birds, and for bird communities breeding near

habitat edges or in shrubs. Furthermore, overprediction was

Diversity and Distributions, 22, 905–917, ª 2016 John Wiley & Sons Ltd 909

Ecological effects on species richness models



higher in communities exhibiting higher functional dissimi-

larity (resulting from competitive exclusion).

Relative model performance for bird functional

groups

For bS-SDMs, we found high variability in NRMSE among

functional groups and in mean assemblage prediction suc-

cess (Figs 4 and 5). By contrast, NRMSE was consistently

low for MEM and pS-SDM predictions with lowest errors

for groups 1 (sedentary, common forest birds, partially car-

nivorous and omnivorous; cf. Table S3) and 7 (sedentary

species breeding in tree holes). Lowest NRMSE in bS-SDMs

was found for groups 1, 3 (short-distance migrants breed-

ing on elevated nests), 5 (short-distance migrants, cavity

breeders in banks and on rock faces) and 7. NRMSE in bS-

SDMs was considerable higher for groups 2 (long-distance

migrants), 4 (migratory ground breeders of forests and

grasslands) and 6 (ground breeders of lowland marshes and

highland habitat edges). For groups 1, 3 and 5, differences

in NRMSE between bS-SDMs and pS-SDM/MEMs were

lowest, and predictions of mean species richness by bS-

SDMs were rather similar to mean species richness pre-

dicted by pS-SDMs and MEMs (Figs 4, 5 and S5). Indeed,

the reduction in overprediction by bS-SDMs was significant

at least for group 3 as indicated by null model testing (ob-

tained by randomizing group memberships 5000 times

while keeping number of species per group constant; Figs 4

and S11). Still, NRMSE and assemblage prediction success

were not significantly improved, and bS-SDM predictions

still biased to some extent (Fig. S11).

Single-trait linear regressions had high explanatory power

and explained up to 82% of the variance in NRMSE. Trait

effects on NRMSE were largely congruent for MEMs and

pS-SDMs while differing for bS-SDMs (Fig. 6) although the

effect directions were largely the same (Table S6). For

MEMs and pS-SDMs, only few traits remained significant

after Holm’s adjustment; for example, NRMSE was signifi-

cantly reduced in bird groups with larger breeding habitat

niches. Also, acquisition behaviours with active searching

for food items (e.g. probing and overturning objects) signif-

icantly reduced NRMSE and may indicate a stronger suc-

cess rate when foraging. For bS-SDMs, more traits

remained significant. Additional to the effects reported

above, which bS-SDMs share with the other model types,

NRMSE in bS-SDMs was significantly lower in bird groups

breeding and foraging in gardens and mixed forests and

was significantly higher in groups foraging and/or breeding

in or near lotic water, reed marshes, sandy or gravel sites

and dry grasslands.

We found no significant correlation between single-SDM

performance and S-SDM/MEM performances (significance

tested against null distribution of 1000 t-values from ran-

domizing group memberships of species while keeping num-

ber of species per group constant). Yet, the permutation test

showed that significant relationships between prediction

errors (NRMSE) and species richness or prevalence may also

arise from statistical artefacts (Figs S6 and S7). For example,
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Figure 2 Predicted species richness against observed richness (a-c) and along elevation (d-f) for MEMs (a, d), pS-SDMs (b, e) and bS-

SDMs (c, f). Shown are predictions (grey dots) along with calibration line (dashed). In panels d-e, observed species richness is depicted

in black; mean predicted and observed species richness along elevation were estimated with quadratic linear models. Predictions were

made on hold-out data using simple average consensus.
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NRMSE of pS-SDM and MEM seems to generally decrease

with species richness, whereas this artefact was much less

pronounced in bS-SDMs.

Assemblage prediction success

Mean assemblage prediction success over all sites for bS-

SDMs was 0.8. Community mean traits explained 42% of the

variance across sites with largest independent contributions

from diet, foraging and breeding habitat and lower

prediction success in places with large carnivores, near habi-

tat edges and shrubland (Fig. 3, Table S5). Community mean

prevalence had a smaller, consistently positive effect on

assemblage prediction success. Mean functional distance had

a small negative effect indicating that species assemblages

were more accurately predicted in communities with more

similar species (resulting from environmental filtering).

Single-trait linear regressions explained up to 63% of the

variance in assemblage prediction success between functional

groups (Fig. 6; Table S6). Among groups, mean assemblage

prediction success in bS-SDMs significantly improved for

bird groups feeding underwater or on rocky slopes and sig-

nificantly decreased for bird groups foraging in canopy, and

open and low forests, and for long-distance migrants breed-

ing on elevated nests. Counter-intuitively, NRMSE and

mean assemblage prediction success in bS-SDMs were not

related and species assemblage was best predicted for groups

5 and 6, the latter of which exhibited highest NRMSE

(Fig. 5).

DISCUSSION

This study provides the first thorough analysis of species’

ecological effects on MEM and S-SDM predictions. While

previous studies have hypothesized that environmental

heterogeneity and prevalence effects may typically lead to

overpredicting low species richness and underpredicting high

species richness by MEMs and pS-SDMs (Calabrese et al.,

2014), these factors have not been rigorously tested and have

not been related to species’ functional characteristics. Fur-

thermore, the typical richness overprediction by bS-SDMs

has been ascribed alternatively to statistical bias (Calabrese

et al., 2014), to unaccounted biotic interactions (Dubuis

et al., 2011; Guisan & Rahbek, 2011; Thuiller et al., 2015) or

to inadequate representation of relevant environmental filters

(D’Amen et al., 2015a), but has never been explicitly related

to species’ ecology. Using a comprehensive dataset on avian

communities, we show that typical biases in richness predic-

tions by MEMs and differently stacked S-SDMs seem to be

strongly affected by species’ habitat and resource require-

ments, which determine the degree of environmental hetero-

geneity needed and perceived by the species and which can

partially be amended by adequate predictor choice and reso-

lution. Prevalence only affected richness underprediction.

Higher functional dissimilarity (as indicator of competitive

exclusion) significantly increased richness overprediction in

MEMs and pS-SDMs and significantly decreased assemblage

prediction success in bS-SDMs. When modelling species

richness separately for different functional groups, model

performance was highly variable among groups with more

accurate predictions for habitat generalists, especially for

groups with large breeding habitat tolerance. Functional

group analyses also showed that bS-SDMs do not generally

overpredict species richness and may yield similar predictions

to the other approaches for some groups. However, this is

not necessarily related to more accurate predictions of
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Figure 3 Independent effects of different trait categories on

overall explained deviance in species richness residuals of MEMs

and pS-SDMs, and in assemblage prediction success in bS-

SDMs. Independent contributions were calculated using a

modified version of hierarchical partitioning that allows defining

variable combinations. Predictions were made to hold-out data

using simple average consensus. Please see Table S5 for full

results of multivariate linear models.
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species assemblages by bS-SDMs. In the following, we discuss

these issues more carefully and identify potential challenges

and perspectives for predicting species richness and species

assemblages.

Prediction bias intertwined with functional traits

MEMs and pS-SDM accurately predict the mean response of

species richness along elevation (Fig. 2d,e; Dubuis et al.,

2011; Guisan & Rahbek, 2011). Still, predictions are biased at

high and low diversity sites (prediction bias I, Fig. 1a), which

implies that stochastic components representing local vari-

ability are not well captured. Calabrese et al. (2014) sug-

gested removing this bias type I by adjusting the per-species

occurrence probabilities as a function of site-specific species

richness. However, if we aim to project biodiversity response

to environmental change, it seems more advisable to better

understand the underlying causes of bias to tackle these ade-

quately. Our results indicate that accuracy of species richness

predictions is affected more strongly by environmental

heterogeneity than by prevalence and is highly entangled

with species’ ecology, especially with habitat and resource

requirements (D’Amen et al., 2015a).

It seems promising to reduce biases in species richness

predictions by further improving the environmental predic-

tors, which corroborates recent findings for other taxa (Cord
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Figure 4 Predicted and observed species richness along elevation for different species groups (cf. Table S3; group 1: sedentary,

common forest birds, partially carnivorous and omnivorous; group 2: long-distance migrants; group 3: short-distance migrants breeding

on elevated nests; group 4: migratory ground breeders of forests and grasslands; group 5: short-distance migrants, cavity breeders in

banks and on rock faces; group 6: ground breeders of lowland marshes and highland habitat edges; group 7: sedentary species breeding

in tree holes). Observed species richness values are shown in black and their mean as solid black lines. pS-SDM predictions are

presented by grey crosses and dashed lines (mostly not discernible from black solid lines indicating mean observed species richness), bS-

SDM predictions by orange dots and solid orange lines. We tested for significantly reduced overprediction in bS-SDMs, indicated by pb,

by comparing the mean difference in richness predictions and observations against a null model distribution obtained by randomly

permuting group memberships 5000 times. MEMs are not shown as they generally coincide with pS-SDMs (cf. Fig. S7). Predictions

were made on hold-out data using simple average consensus.
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Figure 5 MEM and S-SDM performance for different bird

functional groups (see Fig. 4 for explanation of functional

species groups). Overall prediction error is assessed as NRMSE

(left). Assemblage prediction success of bS-SDMs (right)

represents the mean success over all sites. Predictions were made

on hold-out data using simple average consensus.
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et al., 2014; D’Amen et al., 2015a). Clearly, more efforts

should be given to improving habitat and resource-related

variables, which are important for describing relative avail-

ability of adequate niche space and resources (Newbold

et al., 2009; D’Amen et al., 2015a). For example, finer-

resolved habitat data could be achieved through remote sens-

ing (Edwards et al., 1996; Cord et al., 2014). For animals

and birds in particular, we see special need for improving

predictors on structural habitat diversity. For example, in

our analyses, underprediction and/or overprediction were

more severe in communities breeding in banks or near habi-

tat edges, and prediction error was higher for species groups

that preferably breed on the ground. Ground breeders often

show particular requirements regarding the structural habitat

diversity for supporting both shelter and resources. Such

structural facets were not well captured by our coarse-scale

habitat predictors even though we tried to re-define habitat

classes according to structural diversity. Another interesting

aspect is that often effects of breeding habitats were more

consistent among models or more important than foraging

habitat. Thus, it is not sufficient to describe where the spe-

cies may find enough resources to survive. For accurate bio-

diversity predictions, it seems also crucial to consider where

the species is able to reproduce. Species’ demography is

hence an important aspect that needs to be considered (Nor-

mand et al., 2014; Thuiller et al., 2014), for example by inte-

grating life stages into niche models (Taboada et al., 2013).

Adequate representation of potential resource levels is not

an easy task. The analyses of species richness residuals indi-

cated that lack of food availability might strongly affect over-

prediction patterns in space. For example, overprediction

tended to be more severe in communities with higher carni-

vore richness. Also, assemblage prediction success in bS-

SDMs was reduced for carnivorous diets, although these

effects did not remain significant after Holm’s adjustment.

We attribute these effects mostly to the spatial requirements

of birds of prey. For these species, large home ranges are typ-

ical, and these are not well captured at the 1 km resolution

used here. We, thus, strongly recommend that home range

sizes should be considered when deciding on spatial resolu-

tion of biodiversity models and that biodiversity models

should move towards employing a variety of species or func-

tional group-specific spatial resolutions, instead of one uni-

versal spatial resolution as is usually done. By contrast, the

presence of omnivores reduced overprediction. This may be

due to the opportunistic and highly adaptable behaviour of

omnivores such as Corvidae that are able to utilize a wide

range of habitats. Diet and behavioural traits are thus an

important determinant for the accuracy of biodiversity

predictions.

Prevalence is a factor with an essentially non-reducible

effect on prediction bias I (Fig. 1). However, our analyses

showed that the relative effect of prevalence is comparably

low. It is only important for explaining richness
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Figure 6 Explained deviance of univariate linear models, which relate prediction error (NRMSE, as proxy for prediction bias II) and

mean assemblage prediction success to trait averages within functional groups. Prior to modelling, the within-group average traits were

standardised by the within-group standard deviation (except for niche sizes). We only present explained variance for traits that for at least

one model type remained significant (p≤0.05) after Holm’s adjustment for multiple tests. The dotted line indicates the corresponding

threshold for adjusted significance. Traits with prefix “e” refer to Eltonian traits related to trophic position and acquisition behaviour;

prefix “f” indicates habitat traits related to foraging; prefix “b” indicates habitat traits related to breeding. Please see Tables S2 and S4 for

more information on traits and within-group trait values, and Table S6 for full results of univariate linear models.
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underprediction in MEMs and pS-SDMs. We found lower

underprediction, that is lower prediction bias, for more

prevalent species. However, community average prevalence

only ranged from low to intermediate values (0.16–0.66),
and, thus, our results corroborate previous findings that

prediction accuracy is reduced for very narrow ranging spe-

cies but potentially also for very wide-ranging species (Jetz

& Rahbek, 2002; Calabrese et al., 2014). Here, it is interest-

ing to note that prevalence may also be affected by observer

bias, which is generally low in the Swiss breeding bird data

(K�ery & Schmid, 2006), but may prove more important in

other datasets. Observer bias may inflate the importance of

the prevalence effect on prediction accuracy of species

richness predictions and should therefore receive more

attention.

Comparative model performance and future avenues

pS-SDMs and MEMs produced very similar predictions and

were also similarly affected by species ecological traits. Pre-

dictions by bS-SDMs, on the other hand, differed more

strongly. General overprediction of species richness (predic-

tion bias II; Fig. 1a) led to typically higher prediction errors

(NRMSE) in bS-SDMs. Calabrese et al. (2014) argued in

mathematical terms that S-SDMs based on stacking binary

predictions should quite generally lead to biased results.

Results from our functional group analysis indicate large dif-

ferences in the magnitude of this bias. For two functional

groups (group 3 and 5), the mean richness was predicted

well and overprediction was significantly reduced for group

3. Still, all bS-SDM predictions had higher NRMSE, and thus

were more biased, than either MEMs or pS-SDMs. These

results partially corroborate findings by D’Amen et al.

(2015a) that bS-SDMs may, in some cases, yield similarly

accurate predictions of species richness as pS-SDMs and

MEMs. Overall, NRMSE in bS-SDMs tended to be lower for

habitat generalists foraging and breeding in gardens and

mixed forests and higher in habitat specialists foraging and

breeding in reeds, or gravel banks. This partially supports

our initial hypothesis that prediction bias II in bS-SDMs may

be lower for generalist species which can avoid interspecific

competition using resources from different regions of their

fundamental niche (Colwell & Fuentes, 1975; Martin et al.,

2004). Still, it provides no conclusive evidence that overpre-

diction in bS-SDMs is indeed driven by unaccounted biotic

interactions (Dubuis et al., 2011; Guisan & Rahbek, 2011),

but merely emphasizes that accuracy of species richness pre-

dictions may decrease in the face of high niche partitioning.

This, again, may relate to subscale environmental heterogene-

ity not well captured by the predictors and underlines the

strong entanglement of statistical and ecological effects

(Fig. 1c). It remains open how richness overprediction in

bS-SDMs relates to contemporary biotic interactions, which

should certainly be explored in more detail in the future. For

example, recently published joint species distribution models

could be used for disentangling environmental and biotic

effects although they may also similarly suffer from unac-

counted environmental heterogeneity (Pollock et al., 2014;

Warton et al., 2015).

The main advantage of bS-SDMs is their ability to con-

struct species lists directly and then to predict biodiversity

inventories and to derive species turnover. Our results indi-

cate that prediction success for local assemblages strongly

depends on species’ ecology. Critically, species richness pre-

diction errors in bS-SDMs and assemblage prediction success

were not correlated. Thus, less-biased species richness predic-

tions do not necessarily correspond to more accurate species

lists predicted from bS-SDMs. This could indicate difficulties

in predicting the outcome of stochastic biotic processes such

as competition, but also dispersal and disturbances among

others, which requires further exploration in the future.

Without further model development, we have to caution that

bS-SDMs might not be capable of making good simultaneous

predictions of species richness and species assemblages.

Overall, we see great potential for functional approaches

to improving biodiversity predictions. First, functional

groups can be identified for which simple bS-SDM predic-

tions are sufficient for predicting assemblages and those that

require more complicated community-level approaches

(Mokany et al., 2011; Pollock et al., 2014; D’Amen et al.,

2015a). Second, a functional approach may allow for a more

targeted, trait-based selection of environmental predictor sets

and adequate selection of spatial resolution. Clearly, more

elaborate analyses are needed for clarifying the role of demo-

graphic processes and biotic interactions as well as sampling

errors for predictions of community composition. For ani-

mals, the study of functional groups and biotic interactions

will also require to consider trophic interactions. Finally,

more work is needed to improve predictions for rare and

specialist species as these seem to be the most difficult

groups to predict while also being the most vulnerable at the

same time (Platts et al., 2014).
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