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We approached the case, you remember,
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Abstract

As species and biodiversity are increasingly threatened by climate and land use change,

there is a growing demand to predict potential changes in species distribution and compo-

sition, e. g. for conservation planning and policy making. Statistical species distribution

models have been widely used in this context, though they remain subject to criticism as

they implicitly assume (pseudo-) equilibrium and saturated breeding habitats, and do not

explicitly incorporate demographic processes and biotic interactions. Herein I attempted

to test the validity of these assumptions in a virtual dynamic system, and assess the ef-

fects of ecological processes and transient dynamics on the prediction accuracy of species

distribution models. I built a spatially explicit multi-species dynamic population model,

which incorporates species-specific and interspecific ecological processes, demographic and

environmental stochasticity, and environmental change. A virtual ecologist sampled the

population in different scenarios, and estimated species distribution models with gener-

alised linear (GLM) and generalised additive (GAM) modelling algorithms. Spatial and

spatiotemporal predictions were made and validated against simulated true species distri-

bution. The resulting model performances were then related to the prevailing ecological

processes and temporal dynamics.

I found that equilibrium state and the readiness to regain equilibrium were crucial for

the validity and transferability of species distribution models. Furthermore, these effects

were governed by ecological characteristics and processes, primarily stenotopy and disper-

sal. Prediction accuracy was also sensitive to spatial population and source-sink dynamics,

with declining accuracy with an increasing use of lower-quality habitat. Above all, en-

vironmental and demographic stochasticity impeded the explanation of large proportions

of deviance in species occurence. These findings were consistent throughout model algo-

rithms. My analyses thus provide a provisional guide under which circumstances which

species can be reliably predicted by species distribution models, and where interfaces to

more mechanistic, process-based models are needed.

1



1 Introduction

Climate and land use change pose major threats to the persistence of species and biodi-

versity. As these are critical for the provision of ecological functions and related ecological

services, spatial and temporal predictions of species distribution gain ever more impor-

tance, e.g. for deriving adequate management actions.

One way to predict potential changes in species distribution and composition are species

distribution models, which have been widely used to predict species occurence in space

(see Guisan & Zimmermann, 2000) and more recently also in time (Revermann et al., sub-

mitted; Thuiller, 2004, 2003). These data driven models relate observed species occurence

with prevailing environmental conditions. Simple species data, as presence-absence and

presence-only observations, can be used to estimate the models, making them an easy to

use and powerful tool for ecologists and conservationists.

But still, species distribution models remain subject to criticism as they have several short-

comings. They implicitly assume (pseudo-) equilibrium between the species and its envi-

ronment, and saturated breeding habitats (Araujo & Pearson, 2005; Austin, 2002; Barry &

Elith, 2006; Burgman et al., 2005; Fielding & Bell, 1997; Guisan & Theurillat, 2000; Guisan

& Thuiller, 2005; Guisan & Zimmermann, 2000; Pearson & Dawson, 2003). Furthermore,

they explicitly incorporate neither demographic processes, nor biotic interactions such as

predation and competition. I will briefly discuss how these biotic processes can promote

errors in species distribution modelling.

Two critical questions arise from the assumption of pseudo-equilibrium. (1) To which de-

gree is the species under study really in equilibrium with its environment? And (2) how

long may it take to regain equilibrium, e.g. after disturbances, or to reach a new stable

state, e.g. after environmental change? Following Hutchinson (1957), the species is in

equilibrium with its environment when it occurs in all environmentally suitable areas and

its distribution thus represents its full biotic potential. In reality, however, the species dis-

tribution may be constrained locally by history, disturbance and other temporal dynamics

(Austin, 2002; Barry & Elith, 2006; Guisan & Thuiller, 2005; Pearson & Dawson, 2003).
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For instance, several studies have emphasised that not all present-day species have yet

reached equilibrium since the last glacial maximum (Araujo & Pearson, 2005; Svenning

& Skov, 2004, 2007). When predicting species distributions under changed environmental

conditions, an instantaneous realisation of a new equilibrium situation is implicitly as-

sumed, thereby ignoring transient dynamics. Also, when the model predicts a range shift

under e.g. climate change, no inferences can be made about when this process will be

terminated.

The assumption of saturated breeding habitats indicates that higher quality habitat is pro-

portionally used more frequently than lower quality habitat (Fielding & Bell, 1997). This

contradicts the concepts of metapopulations and source-sink dynamics (Pulliam, 1988).

According to these concepts species may be present at unsuitable sites (sink habitats)

through immigration from source habitats. They may also be temporarily absent from

suitable habitat due to local extinction events as a consequence of demographic and envi-

ronmental stochasticity. In this way the statistical model may falsely recognise unsuitable

habitat as suitable and vice versa, since it merely considers a snapshot of the dynamic

situation.

Species distribution models intrinsically incorporate the effects of demographic processes,

predative, competitive and other biotic interactions (Guisan et al., 2002; Hijmans & Gra-

ham, 2006). The realised niche is the species response to those many complex interactions.

But not all possible combinations of these factors will exist at any one place or time. Rather

these interactions will vary in space and time. So actually, through taking a snapshot view

of a finite space, the realised niche modelled is only valid for that particular (sub-) popu-

lation at that particular time. Generalisability for the whole species and transferability in

space and time must be thouroughly validated (Schröder & Richter, 1999).

In answer to these supposed pitfalls of species distribution modelling, it has been argued

that the models need to become more dynamic, e.g. by linking or supplementing them with

more mechanistic, process-based models, in order to better describe transient responses to a

stochastically and dynamically changing environment (Austin, 2002; Burgman et al., 2005;

Dettki et al., 2003; Guisan et al., 2006; Guisan & Thuiller, 2005; Kearney & Porter, 2004;
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Pearson & Dawson, 2003; Pearson et al., 2006). But to date, it remains uncertain under

which circumstances the incorporation of dynamic processes is really necessary. Only few

studies have so far tried to systematically investigate how ecological processes and tem-

poral dynamics influence the performance of species distribution models (but see Brotons

et al., 2004; McPherson & Jetz, 2007).

The objectives of this study were thus to assess the accuracy of spatiotemporal predictions

of species distribution models when confronted with non-equilibrium dynamics, and to as-

sess how species-specific ecological traits and interspecific interactions influence the effect

of transient dynamics on model performance. But all these mechanisms and circumstances

are hard or even impossible to capture in nature, and also transferability in space and

time can not be tested easily due to the lack of data. I therefore applied a virtual species

approach. This gave me the advantage of a fully known reality, where not only the true

distribution of the species under study was known, but also the processes determining the

observed patterns.

I built a dynamic, spatially explicit muli-species dynamic population model which incor-

porates species-specific traits as the ecological niche, dispersal ability and intrinsic growth

rate, interspecific characteristics as competition and predation, demographic and environ-

mental stochasticity, and environmental change. Different scenarios were calculated by

systematically manipulating model properties within a certain range, species growth rates,

the strength of biotic interactions, species range, dispersal strategies, and the rate of cli-

mate change.

A virtual ecologist sampled the populations at different points in time, providing me with

snapshots of the dynamic situation, and calculated statistical species distribution models

from the data. Models were build using generalised linear (GLM, see McCullagh & Nelder,

1989) and generalised additive modelling (GAM, see Hastie & Tibshirani, 1990) algorithms.

These methods have been widely used to model and predict species occurence and have

the advantage that they are implemented in most statistical software packages. Moreover,

several studies have shown that the different methods lead to quite similar results (e.g.

Elith, 2000; Elith et al., 2006; Ferrier & Watson, 1997). I thus focussed on the compari-
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son of parametric, model-driven GLMs and semi-parametric, data-driven GAMs, in regard

to their capability to capture the species-habitat relationship, and their transferability in

space and time. Both spatial and spatiotemporal predictions of the species distributions

were made and evaluated against the real distribution of the virtual species.
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2 Methods

2.1 Dynamic Model

The virtual world comprises an insect predator-prey system where the predator is a ho-

lometabolous insect that lives parasitically during its larval stage on an arthropod host

and thereby causes the death of the host (Mills & Getz, 1996). Such host-parasitoid

interactions are well suited for simple population models because they can have a much

simpler structure than other enemy-victim interactions due to the tight link between trophic

and reproductive aspects of the parasitoid life history (Hassell, 2000a; King & Hastings,

2003; Nicholson, 1933). As only the adult female parasitoids search for hosts and oviposit

directly upon finding them, this act of parasitism closely defines the reproductive success

of the parasitoids while in other predator-prey interactions several or all predator stages

attack with different effectiveness (Hassell, 2000a; Schofield et al., 2005).

In a discrete-generation framework a perfectly synchronised parasitoid interacts with a

host that has distinct generations and is univoltine. This is frequent in temperate regions

where a diapause during winter is common (Hassell, 2000b; Hochberg & Holt, 1995; Mills

& Getz, 1996). Movement and dispersal are limited to the adult insect stages. In analogy

to real systems the model is tritrophic, i.e. the host-parasitoid interaction occurs in the

presence of a host-plant which affects the presence and the abundance of the host. The

model system is integrated in a dynamic environment.

A coupled-map lattice (CML) model is used to link the local (within-patch) and regional

(between-patch) dynamics (Bonsall & Hassel, 2000; Comins et al., 1992; Hassell et al., 1991;

Jones et al., 1996; Wilson & Hassel, 1997). Space is represented by a two-dimensional lattice

of 257× 257 sites. At each site, the local host-parasitoid population dynamics are mapped

annually. The populations are then connected by dispersal. I thus obtain a spatially

explicit multi-species dynamic population model which may be systematically modified in

several ways.

6



2.1.1 Environment

The two-dimensional grid is composed of different layers providing information on abiotic

habitat conditions. Main input layers are topography and soil type distribution (Figure

1). Both are neutral landscapes generated using the midpoint displacement algorithm

(Hargrove et al., 2002; Moloney & Levin, 1996; Saupe, 1988; With, 1997). This fractal

algorithm creates a three-dimensional surface, a topographical map, characterized by two

parameters, the Hurst-factor H controlling the degree of spatial autocorrelation and the

variance σ2 in the displacements of points.

To generate a binary soil map a percentage of occupancy p is specified. Soil types are

assigned to the fractal landscape by slicing the surface at p% of the elevational range and

attributing a soil type to each slice.

(a) (b)

Figure 1: Maps of (a) elevation and (b) soil type distribution created by fractal algorithm.

Additional ecogeographical information layers are calculated. Potential soil moisture dis-

tribution is approximated by the extended topographic wetness index W (Beven & Kirkby,

1979; O’Neill et al., 1997):
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Wij = ln

(
Aij

tij tan βij

)
(1)

where Aij is the specific catchment area, tij the local soil transmissivity and βij the surface

slope of the grid cell.

Temperature is interpolated by considering altitudinal differences, the temperature vertical

gradient Tlapse and radiation (Bellasio et al., 2005; Moore et al., 1993; Wilson & Gallant,

2000):

Tij = T − Tlapse

(
zij

1000

)
+ C

(
Sij −

1

Sij

)
(2)

where T is the temperature averaged over the whole landscape at elevation z = 0 (see 2.1.5),

zij the elevation of the grid cell, C a constant and Sij the ratio between the insolation of

the cell and the horizontal surface. The insolation is truncated to the cosine of the solar

illumination angle i :

cos i = cos θ0 cos β + sin θ0 sin β cos (φ0 − A) (3)

with θ0 and φ0 the solar zenith angle and azimuth, respectively, A is the aspect and β the

surface slope (Dubayah & Loechel, 1997).

2.1.2 Within-Patch Dynamics

The difference-equation framework for my discrete-generation host-parasitoid model can

be written in the generalized form:

Nt+1 = Poi {N∗
t+1} = Poi {λNtg(Nt)f(Pt)}

Pt+1 = Poi {P ∗
t+1} = Poi {cNt[1− f(Pt)]}

(4)

where N and P are the population abundances of the susceptible host stage and the

searching adult female parasitoid, respectively, in generations t and t + 1, λ is the net

finite rate of increase of the host population, g(Nt) the density-dependent survival of the

hosts progeny, f(Pt) is the proportion of hosts escaping parasitism. One minus this term
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therefore gives the proportion of host individuals parasitised, and c includes the average

number of adult female parasitoids emerging from each host parasitised. Poi indicates

that the actual population abundances at t+1 are drawn from a Poisson distribution with

mean N∗
t+1 and P ∗

t+1 respectively. This way the populations’ reproductive success is not

strictly deterministic but demographic stochasticity is accounted for.

Functional Response The function f(Pt) depends on all factors affecting the level of

parasitism. Nicholson (1933) and Nicholson & Bailey (1935) explored a version of model

(4) in which the functional response is linear (type I functional response) and the attacks

are randomly distributed amongst the host population. The fraction of hosts escaping

parasitism is given by the zero term of a Poisson distribution (5) with mean aPt where a

is the area of discovery.

f(Pt) = exp(−aPt) (5)

Host Growth The intrinsic rate of increase λ is modelled temperature-dependent because

in reality the metabolic rates of organisms also strongly depend on it. Above a certain

threshold biological activity increases with increasing temperature until a maximum rate

is reached at an optimal temperature Topt and then decreases again until an upper lethal

value. The relationship between physiological rates and temperature is generally humped

and skewed to the left. O’Neill (1968) and O’Neill et al. (1972) suggested an empirical

equation with empirically derived parameters often referred to as O’Neill or Oak Ridge

Temperature Function (Bartell et al., 1988; Richter et al., 1996). Nevertheless in my

model an approximation of the function’s typical shape shall suffice. I therefor apply a

Gumbel distribution with Topt as location parameter and a scale parameter σ (Figure 2).

I restrain the population’s growth rate even more by introducing a simple but strong Allee

effect (Allee, 1931). Below a critical population size Ncrit, or extinction threshold, no

reproduction occurs and the local population goes extinct. One might imagine the Allee

effect being due to predation or mate shortage.
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Figure 2: Temperature dependence of the host intrinsic rate of increase λ.

Host Density Dependence In my virtual world the host depends on the presence and

the abundance of the host-plant. Thus even in the absence of parasitism the host-plant

induces a host carrying capacity K in each lattice cell. This can be expressed via g(Nt) in

(4). Cook (1965); Hassell (2000b); May (1974); Moran (1950); Ricker (1954) proposed a

discrete version of the logistic equation,

g(Nt) = exp(−sNt) (6)

where

s =
ln λ

K
(7)

The carrying capacity solely depends on the abundance of the host-plant and thus on the

habitat quality of the cell. I assume a maximum carrying capacity Kmax for the maximum

possible host-plant biomass in a cell and further, that the foliage projective cover is directly

proportionate to the physiological response, i.e. the maximum habitat quality yields Kmax

if no competition is present. Hence the actual carrying capacity K is given by Kmax times

the foliage projective cover F .
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Function Symbol Value Unit Description

w 100 m cellwidth
Environment Htopo 0.7 - Hurst-factor for generating topographic map

σtopo 15 - standard deviation in the displacements of points in topo-
graphic map

Hsoil 0.7 - Hurst-factor for generating soil map
σsoil 15 - standard deviation in the displacements of points in soil map
p1 = p2 0.5 - proportions of soil types in fractal soil map

Temperature θ0 78.25 ◦ solar zenith angle
φ0 180 ◦ solar azimuth
Tlapse 10 Kkm−1 temperature vertical gradient
C 1 - constant in equation (2)

Moisture ts1 30 m2d−1 transmissivity of soil type 1
ts2 5 m2d−1 transmissivity of soil type 2

Host density Kmax 120 ind maximum carrying capacity of a cell
dependence µT,hp 16.5 ℃ mean of host-plant’s temperature utilization function

µW,hp 5.5 - mean of host-plant’s moisture utilisation function
µT,cp 12 ℃ mean of competitor-plant’s temperature utilisation function
σT,cp 1 ℃ standard deviation of competitor-plant’s temperature utilisa-

tion function
µW,cp 10 - mean of competitor-plant’s moisture utilisation function
σW,cp 1 - standard deviation of competitor-plant’s moisture utilisation

function
σF 0.1 ind standard deviation for environmental stochasticity

Host growth Topt,λ 16.5 ℃ optimal temperature for host growth rate, location parameter
of Gumbel distribution

σλ 1.4 ℃ scale parameter of Gumbel distribution
Ncrit 5 ind critical population size for Allee effect

Dispersal βhost 1.5 - host’s shape parameter in equation (9)
µhost 0.75 - fraction of local host population emigrating
αpara 2 - parasitoid’s scale parameter in equation (9)
βpara 1.5 - parasitoid’s shape parameter in equation (9)
µpara 0.75 - fraction of local parasitoid population emigrating

Parasitism c 1 ind parameter in equation (4)

Table 1: Constants in the dynamic model

F , the physiological response of the host-plant, is determined by the prevailing environ-

mental conditions in a cell and represents the fundamental niche of the host plant. It

depends on energy and water availability, in particular on the temperature and moisture

conditions of a cell, each representing a one-dimensional resource spectrum. The response

of the host-plant is described by a Gaussian utilisation function with the mean being the

preferred position in the spectrum and a characteristic variance (May & Mac Arthur, 1972).

I have to consider that the topographic wetness index W merely represents the potential

soil moisture distribution as it refers to each cell’s capability of water retention relative to

the whole area, while the actual amount of retained water of course depends on the actual

precipitation P . Thus the same cell with one and the same wetness index may in some
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Figure 3: The fundamental and realised niche of the host-plant.

years be too moist or too dry for the plant to persist while in others it offers most suitable

conditions. To account for this I standardise the topographic wetness index:

Wij,corr = Wij

(
P

Pbase

)
(8)

Wij,corr is the corrected or standardised wetness index, Pbase is the base precipitation to

which the plant’s optimum resource utilisation refers, P is the actual precipitation of the

timestep. That way in dry years (relative to the base precipitation) the cell’s wetness index

and accordingly the amount of retained water becomes lower and in moist years higher.

Following Liebig’s law of the Minimum, the plant’s physiological response F is calculated

by multiplying the degree of utilisation of each resource. To incorporate environmental

stochasticity, the actual physiological response is drawn from a normal distribution with

mean F and a variance σ2
F .

Competition for resources is introduced by adding a second plant species whose fundamen-

tal niche overlaps with that of the host-plant. The competitor-plant always out-competes

the host-plant resulting in a narrower, realised niche of the latter (Figure 3).

If the environmental conditions are suitable, host-plant and competitor-plant are seeded
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instantaneously and hence are not restricted by any dispersal rules. However, to avoid too

abrupt changes in the plant distribution I built in a simple memory effect such that the ac-

tual capacity of the new time step is the arithmetic mean between the calculated capacity

of time step t+1 and the old capacity of time t. In the end host-plant and competitor-plant

species each persist as a single large patchily distributed population, forming a matrix of

suitable and unsuitable habitat patches for the host and indirectly the parasitoid.

2.1.3 Between-Patch Dynamics

In the between-patch dispersal phase a proportion of adult hosts and parasitoids leave

their natal patch to colonise other cells in the lattice. Local dispersal is assumed, which

means that the dispersers will be concentrated around the area in which they developed as

juveniles according to the underlying dispersal rules. The probability pij that an individual

disperses from cell i to j over the integer distance dij is described by a two-parameter

Weibull distribution which allows different dispersal strategies (Söndgerath & Schröder,

2002):

pij =
exp(−αdij

β)∑
j exp(−αdij

β)
(9)

where the scale parameter α determines the dispersal distance. A high value of α indicates

short-range dispersal, a low one large-range dispersal. At α = 0 the dispersers are evenly

distributed throughout the lattice (global dispersal). The Weibull distribution is further

defined by the shape parameter β which determines the shape of the rate function. In the

case of β = 1 the Weibull distribution equals the exponential distribution and the dispersal

from cell i to j is described by an exponentially decreasing probability (Johst et al., 2002;

Johst & Drechsler, 2003; Neubert et al., 1995). The integer distance dij between cells

depends on the applied neighbourhood rule, in this case an 8-cell (Moore) neighbourhood

(Hogeweg, 1988).

To account for some demographic stochasticity the actual integer number of dispersing

individuals is drawn from a binomial distribution with mean pij(µxXt) where µx is the

fraction of the local population Xt emigrating, which is constant over all cells (Johst &
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Drechsler, 2003). Individuals dispersing to unsuitable habitats, i.e. cells without host and

host-plants respectively, die. I assume cyclic boundary conditions.

2.1.4 Climate Data and Climate Change

Main climate variables in the virtual world are energy and water, in particular mean sum-

mer temperatures and mean annual precipitation. Long-term average values and typical

variations for Central Europe were used to generate time series of current climate.

Mean Standard Deviation

2000 640 mm 50 mmPrecipitation
2050 580 mm 50 mm
2000 16 ℃ 0.7 ℃Temperature
2050 19 ℃ 0.7 ℃

Table 2: Climate parameterisation

A generalised climate change scenario was derived for the period 2001 to 2050. Rates

of change were obtained from the projected changes of the IPCC SRES scenario A2 for

Central and Northern Europe (Houghton et al., 2001). In this scenario temperature will

increase by 3℃ in 50 years, precipitation will decrease by 10%. Parameters are shown in

Table 2.

Time series were calculated through linear interpolation between current and future values

taking into account interannual variations.

2.1.5 Process Simulation and Scenarios

A standard simulation lasts 120 years. At the beginning, hosts and parasitoids are ran-

domly distributed over the suitable habitat. The model ’spins up’ for 70 years, running

with the long-term climatic average, ensuring a long-term equilibrium between the host

population and its abiotic and biotic environment. Such equilibrium is reached when ex-

tinction and recolonisation events balance each other. Scenarios are applied over the last

50 model years, during which the population is sampled by the virtual ecologist.

Scenarios were derived in which ecological processes and temporal dynamics were system-

atically manipulated. Host’s growth rate, the strength of biotic interaction, i.e. the level of

14



Function Symbol Values Unit Description

Host density σT,hp 1.5 2.5 ℃ standard deviation of host-plant’s temperature utilisation func-
tiondependence

σW,hp 1.5 2.5 - standard deviation of host-plant’s moisture utilisation function
Host growth λmax 35 70 ind maximum intrinsic rate of increase
Dispersal αhost 0.5 4 - host’s scale parameter in equation (9)
Parasitism a 1 10 ind area of discovery in equation (5)

Table 3: Manipulated parameters in the dynamic model

parasitism, the resource utilisation of the host-plant, the dispersal strategy, and the rate of

climate change were varied within a certain range. This range depended on the boundary

condition, that both the host and the parasitoid population must persist throughout the

whole simulation. Once the parameter ranges were identified I took their minimum and

maximum value, respectively, as input for the different scenarios (Tables 2 and 3). All

possible parameter combinations were used with both constant and changing climate, re-

sulting in 32 scenarios. The host’s intrinsic rate of increase was either high or low (Figure

2), parasitoids either attacked only one host or several ones, host-plants were either steno-

topic or eurytopic regarding their resource preferences (Figure 3), and finally the hosts

assumed either very local or rather globalised dispersal compared to the parasitoids. I ran

five replicate simulations for each scenario.

2.2 Virtual Ecologist

2.2.1 Sampling

Similar to real field surveys, a virtual ecologist sampled the host population with the same

strategy as an ecologist would probably select in reality. There are several sampling tech-

niques available. Hirzel & Guisan (2002) however, suggested regular and equal random

stratified sampling the most accurate and most robust strategies. My virtual ecologist

uses the latter sampling design where the sampling is stratified by those environmental

predictors which are believed to have the greatest potential influence on species distribu-

tion (Hirzel & Guisan, 2002; Maggini et al., 2002; Tyre et al., 2001). These predictors

must be chosen a priori. As I know that the host directly depends on the presence of the
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Figure 4: Example of stratified sampling design. The quantiles of the temperature distribution are taken
to split the data into 5 ordinal classes.

host-plant, whose ecological niche is defined by temperature and water availability, and

hosts growth rate is temperature-dependent, it would be best to use temperature and wa-

ter availability as stratifying variables. But because water availability is distributed very

heterogenously at a small spatial scale, solely temperature is used for stratification. The

quantiles (0.2-,0.4-,0.6- and 0.8-quantiles) of the temperature distribution are taken to split

the data into five ordinal classes, generating five homogenous environmental strata with

respect to temperature (Figure 4).

An equal number of cells (replicates) is randomly chosen in each stratum. In a selected

cell, the incidence of the species and the prevailing environmental conditions are mapped.

In order to avoid spatial autocorrelation in the response variable samples are not taken

in adjacent cells. Moreover, cells bordering the strata are not sampled because they may

exhibit transitional conditions. The virtual ecologist makes no errors in detection, i. e.

species and environmental variables are recorded exactly as given in the dynamic model.
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This way the output of the statistical model can be related to the underlying demographic

and stochastic processes (Tyre et al., 2001).

Samples were taken in three different years, after spinup phase (year 70), after 95 years

and at the end of the simulation (year 120). In the case of environmental change, I thus

obtained samples of different stages of equilibria. The minimum sample size was 100. This

is comparable to actual empirical studies of this type (Binzenhöfer et al., 2005; Hein et al.,

2007). Additionally the virtual ecologist took samples of sizes 200 and 500, respectively,

to measure the possible effect of sample size on the accuracy of the species distribution

models. The sampled datasets were balanced with a prevalence of approximately 0.5, be-

cause this optimises accuracy of logistic models and ensures comparability between models

(McPherson & Jetz, 2007; McPherson et al., 2004). Sampling was repeated five times for

each simulation run.

2.2.2 Species Distribution Model

Model Formulation Species occurences were coded as 0 for absences and 1 for presences.

Both GLMs and GAMs were then specified using a binomial error distribution and a

logistic link function. To increase robustness and generalisability we sought to find the

most parsimonious model that still explained the data. Following Hosmer & Lemeshow

(2000) and Harrell (2006), model selection was carried out in three steps for GLMs and in

two steps for GAMs. Foremost in the GLM approach, univariate models were estimated

for every predictor variable. Those variables, whose significance test yielded a p-value >

0.25, were excluded from further analysis. Subsequently, the remaining and the full set

of predictor variables for GLMs and GAMs, respectively, were tested for multicollinearity

by calculating Spearman’s rank correlation coefficient ρS. In accordance with Fielding &

Haworth (1995), if two variables had a correlation greater than 0.7 the predictors with the

bigger p-value in the univariate GLM and the smaller deviance in the univariate GAM,

respectively, were excluded. For the remaining variables and for both GLM and GAM, I

apllied an Akaike information criterion (AIC)-based stepwise variable selection procedure
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(Akaike, 1974). Serious shortcomings have been idenitified for stepwise selection procedures

(Whittingham et al., 2006). I chose it nevertheless for computational speed and because

the main focus of this study lies on the average model accuracy, rather than on finding

the single best set of predictor variables. Furthermore I argue, that there is no single best

set of predictors because the detectability of the species-habitat relationship is limited by

sample size. I checked for significance of linear and quadratic terms in GLM, whereas the

linear term was forced into the model each time the quadratic term was selected in the final

model. In GAM the predictors were allowed as parametric linear and up to second-order

polynomial terms, and as non-parametric cubic smoothing splines with up to four degrees

of freedom.

Spatiotemporal Predictions For both the GLM and GAM models, spatial predictions

were made for the entire region, and spatiotemporal predictions for the entire region and

the respective two remainder time slices of the simulation run. Thus both past and future

species distributions were predicted, depending on the year of the virtual study.

Model Evaluation The proportion of deviance in species occurence explained by the fi-

nal models was quantified using the explained deviance r2
L, an equivalent to the coefficient

of determination r2 in logistic regression (Menard, 2000).

I evaluated the models ability to discriminate between occupied and non-occupied sites,

and the degree of correspondence between the estimated probabilities and the observed

incidences (model’s calibration).

The area under the receiver operating characteristic (ROC) curve (AUC) was used to mea-

sure model discrimination (Hanley & McNeil, 1982). AUC is independent of classification

thresholds and ranges from 0 to 1, with values 0.5 for models with no predictive ability

and 1 for perfectly discriminating models. Values above 0.7 indicate useful predictions

according to Hosmer & Lemeshow (2000).

Model calibration was evaluated by calibration curve (Miller et al., 1991), a logistic regres-

sion line fitted to the logits of the predicted probabilities and the observed incidences. A
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perfectly calibrated model yields a zero intercept and a unit slope (Harrell, 2006; Reineking

& Schröder, 2006; Thomson et al., 2007; Wintle et al., 2005), departures indicate bias and

consistent over- and underestimation of occupancy probabilities.

2.3 Link between Prediction Accuracy and Population Dynamics

I examined the effect of transient dynamics and ecological processes on model performance

using univariate and multivariate linear regressions. As measure of prediction accuracy and

thus response variable in regression analysis I used AUC, calculated for the entire data, i.e.

the true species distribution. Linear models (LMs) were estimated using niche width, host

growth, level of parasitism, dispersal distance, time elapse since spinup and sample size as

predictor variables. In the multivariate linear regressions I allowed two-way interactions

between the predictors. To ensure that interaction variables were uncorrelated with their

component variables I orthogonalised the interactions by regressing the interaction vari-

able on its two component variables and taking the residuals as new interaction variable

into the multivariate LM (Burrill, n.d.). An AIC-based stepwise modelling procedure was

applied to identify parsimonious models. The statistical significance of the predictors was

assessed using likelihood ratio tests (Hosmer & Lemeshow, 2000). Significance levels were

adjusted for multiple comparison using the Holm method (Aickin & Gensler, 1996).

Computation The dynamic model was programmed in C++. All other computations were carried

out within the free software environment R 2.5.0 (R Development Core Team, 2007) using the packages

Hmisc (Harrell Jr., 2007), Design (Harrell Jr., 2005), and gam (Hastie, 2006).
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3 Results

3.1 Dynamic Model

Not all suitable cells were occupied by hosts, and local populations were often unsaturated.

The absence of individuals from suitable habitat was due to local extinctions, caused by

predation or stochastic processes, and dispersal limitation. Extinction and recolonisation

events soon balanced each other, resulting in a dynamic equilibrium situation. Thus the

dynamic model produced plausible spatial population dynamics on the fragmented land-

scape.

The different parameter combinations led to some characteristic differences in popula-

tion dynamics. As one might expect, the relative proportion of occupied habitat became

greater as the species was able to adapt to a wider range of environmental conditions, i. e.

switched from stenotopic to eurytopic adaptation. In the scenarios with very local dispersal

the subpopulations were much smaller than in case of long-distance dispersal, resulting in

fine-grained distribution patterns while in the latter scenarios subpopulations were bigger,

thereby producing coarser-grained patterns of occupancy. Also the distribution of subpop-

ulations got more clumped as the hosts growth rate decreased. A higher level of parasitism

caused the subpopulations to be more isolated and the turnover-rates of habitat occupancy

to accelerate. This means that the time that elapsed before an occupied cell became ex-

tinct, was reduced. However, the patterns produced by host growth and parasitism rates

were less pronounced. Under the climate change scenarios the potentially suitable habitat

increased and the subpopulations expanded to formerly unoccupied patches. Animated

graphics of the evolution of host abundances over time can be found in Appendix A.

3.2 Species Distribution Model

3.2.1 Overall Model Performance

In a first analysis I compared GLM and GAM performances and the spatial prediction

accuracies achieved on the training data, and when validating against independent data of
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Figure 5: Distribution of spatial prediction accuracies for GLMs (bottom) and GAMs (top) under equi-
librium (left) and climate change (right). Model predictions were validated against training
datasets (black), independent (blue) and entire datasets (red). Vertical lines and numbers
indicate mean AUC (± standard deviation), n=720.
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Figure 6: Differences between prediction accuracies of training and independent test data of GLMs and
GAMs for different sample sizes.

the same sample size, and the entire data, respectively. Calibration statistics calculated for

the independent and the entire data were also compared. I further examined the variation

of prediction accuracies over time by estimating GLMs on the entire data for 100 subsequent

years in an equilibrium situation and 6 replicate simulations. Spatial predictions were then

made for the entire landscape and prediction accuracies were assessed in terms of AUC.
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Figure 7: Boxplots of calibration slopes calculated for spatial predictions of GLMs (white boxes) and
GAMs (grey boxes) on independent data of same sample size as training data (bottom, white
background) and on entire data (top, grey background) under equilibrium and climate change.
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Figure 8: Boxplots of calibration intercepts calculated for spatial predictions of GLMs (white boxes)
and GAMs (grey boxes) on independent data of same sample size as training data (bottom,
white background) and on entire data (top, grey background) under equilibrium and climate
change.

Both GLMs and GAMs had weak explanatory power on average though GAMs explained

more of the deviance in the data (GLMs: mean r2
L=0.05, maximum r2

L=0.28; GAMs:

mean r2
L=0.09, maximum r2

L=0.35). The accuracies achieved by spatial predictions are

illustrated in Figure 5. Although the apparent model performance on the training data
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seemed to be good, average discrimination was poor for model predictions externally val-

idated. Differences between apparent and externally validated accuracies were greater for

GAMs than for GLMs (Figure 6), and decreased with sample size. The range of AUC

values was smaller for validations on true species distribution than for validations on the

sampled datasets. On average GAMs performed slightly better than GLMs, and spatial

predictions under equilibrium were better than those made in climate change situations.
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Figure 9: Variation in AUC values over time. GLMs were estimated and evaluated on entire datasets.
Shown are the boxplots of AUC values, the mean host abundance (grey) and the 5-year moving
average of the mean host abundance (red).

Boxplots of the calibration slopes and intercepts are shown in Figures 7 and 8. Spatial

predictions made on the independent data yielded good correspondence on average between

estimated occurence probabilities and observed incidences, with approximate unit median

slope and zero median intercept for both model algorithms and both equilibrium and

climate change situation. When predicting species distribution for the entire landscape the

23



estimated occurence probabilities were negatively biased and consistently overestimated,

with median intercepts of approximately -2.3 and -2 for both model algortihms and under

equilibrium respective climate change, and with median slopes between 0.25 and 0.5 for

both GLMs and GAMs and for both equilibrium and climate change.

Variation of prediction accuracies over time is illustrated in Figure 9. AUC increased when

mean host abundance declined and decreased with rising host abundance. Thus the results

indicate a negative correlation between prediction accuracy and mean host abundance.

3.2.2 Effects on Spatial Prediction Accuracies

The results of the multivariate LMs are listed in Table 4, univariate LMs in Table B.1.

Figure 10 illustrates the proportions of explained deviances achieved by univariate LMs,

i. e. relative importance of the predictors, and Figure 11 shows the effects of the different

ecological traits on model accuracy. Results of the univariate LMs were similar to those of

the multivariate LMs regarding the relative effects of the predictors on model performances.

Consequently, only results of the multivariate LMs are reported below.
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Figure 10: Proportion of explained deviance achieved by univariate LMs estimated for the spatial pre-
diction accuracy. Predictor variables are niche width (s), host growth (l), level of parasitism
(a), dispersal distance (h), time elapse since spinup (T), and sample size (n).

Equilibrium All predictors significantly influenced spatial prediction accuracy of GLMs,

and only five predictors that of GAMs (Table 4). Spatial prediction accuracy increased
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GLMs GAMs

Equilibrium Climate Change Equilibrium Climate Change
intercept 1.00 ± 0.01 ∗∗ 0.87 ± 0.02 ∗∗ 0.86 ± 0.01 ∗∗ 0.72 ± 0.02 ∗∗

niche width s -0.09 ± 4e-3 ∗∗ -0.05 ± 5e-3 ∗∗ -0.06 ± 3e-3 ∗∗ -0.02 ± 4e-3 ∗∗
host growth l -7e-4 ± 1e-4 ∗∗ -2e-4 ± 1e-4 -3e-4 ± 1e-4 ∗∗ 5e-5 ± 1e-4

level of parasitism a -2e-3 ± 4e-4 ∗∗ -3e-3 ± 5e-4 ∗∗ 1e-3 ± 4e-4 ∗∗ 3e-3 ± 5e-4 ∗∗
dispersal distance h 0.01 ± 1e-3 ∗∗ 2e-3 ± 1e-3 4e-3 ± 1e-3 ∗∗ -5e-3 ± 1e-3 ∗∗

time elapse T -2e-3 ± 9e-5 ∗∗ -2e-3 ± 1e-4 ∗∗ -2e-3 ± 8e-5 ∗∗ -1e-3 ± 1e-4 ∗∗
sample size n 1e-4 ± 1e-5 ∗∗ 1e-4 ± 1e-5 ∗∗ 1e-4 ± 1e-5 ∗∗ 9e-5 ± 1e-5 ∗∗

s× l 5e-4 ± 2e-4 ∗
s× a -3e-3 ± 8e-4 ∗∗ -4e-3 ± 1e-3 ∗∗ 1e-3 ± 8e-4
s× h 0.01 ± 3e-3 ∗∗ -3e-3 ± 2e-3 6e-3 ± 2e-3 ∗
s× T 2e-3 ± 2e-4 ∗∗ 6e-4 ± 2e-4 ∗∗ 2e-3 ± 2e-4 ∗∗ 9e-4 ± 2e-4 ∗∗
s× n -4e-7 ± 1e-7 ∗∗ -6e-7 ± 2e-7 ∗∗ -3e-7 ± 1e-7 ∗ -5e-7 ± 2e-7 ∗∗
l × a -1e-4 ± 2e-5 ∗∗ -5e-5 ± 3e-5 -6e-5 ± 2e-5 ∗
l × h -2e-4 ± 6e-5 ∗∗ -2e-4 ± 6e-5 ∗∗ -1e-4 ± 7e-5
l × T -2e-5 ± 5e-6 ∗∗ -8e-6 ± 5e-6
l × n
a× h 6e-4 ± 2e-4 ∗∗ -6e-4 ± 2e-4 ∗∗ -1e-3 ± 3e-4 ∗∗
a× T 1e-4 ± 2e-5 ∗∗ 4e-5 ± 3e-5 2e-4 ± 2e-5 ∗∗ 2e-4 ± 2e-5 ∗∗
a× n
h× T 2e-4 ± 5e-5 ∗∗ -1e-4 ± 7e-5 9e-5 ± 5e-5 -2e-4 ± 6e-5 ∗∗
h× n 1e-5 ± 6e-6 1e-5 ± 6e-6 ∗
T × n -8e-7 ± 5e-7

r2 0.71 0.43 0.61 0.36

Table 4: Effects of ecological traits and interspecific interaction on accuracy of spatial prediction of
GLMs and GAMs. Given are the intercept and slopes of the multivariate linear regression
model(± SE), and the explained deviance r2. Significance is indicated by ∗ for p ≤ 0.05 and by
∗∗ for p ≤ 0.01. Parameters in bold remained significant (p ≤ 0.05) after Holm adjustment for
multiple comparison.

with sample size and decreased with niche width, dispersal distance, and time elapse since

spinup. GLM performance also decreased with host growth. Level of parasitism had a

positive effect on the performance of GAMs and a negative on GLMs. Niche width and time

elapse since spinup explained most of the deviance for both model algorithms (Figure 10).

The most important interactions influencing prediction accuracies of both model algorithms

were time elapse since spinup with niche width and level of parasitism, respectively.

Climate Change GLM performance was significantly influenced by four predictors, niche

width, level of parasitism, time elapse since spinup and sample size. GAM performance was

additionally influenced by dispersal distance (Table 4). But, in contrast to the equilibrium

situation GAM prediction accuracy increased with dispersal distance. Time elapse since

spinup explained most of the deviance in GLM and GAM performance (Figure 10). The
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Figure 11: Effects of ecological traits on model accuracy. Shown are the boxplots of AUC values obtained
from GLMs (white), and GAMs (grey) validated on entire data , for both equilibrium and
climate change (n=360).

most important interactions influencing GLM performance were niche width with level

of parasitism respective dispersal distance. In contrary, GAM prediction accuracy was

impacted most strongly by the interaction between level of parasitism and dispersal distance

respective time elapse since spinup.

Total explained deviances of the LMs were lower for GLMs and GAMs estimated under

climate change than for those estimated in the equilibrium situation.

3.2.3 Effects on Spatiotemporal Prediction Accuracies

The results of the multivariate LMs are listed in Tables 5, 6 and 7, univariate LMs are

shown in Table B.2. Density plots of the spatiotemporal prediction accuracies achieved by

GLMs and GAMs are given in Figures 12 and 13. Figure 14 illustrates the proportion of

explained deviances achieved by univariate LMs for the different spatiotemporal predic-

tions. For convenience I introduce the abbreviations AUCT.70, AUCT.95 and AUCT.120 for
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the spatiotemporal prediction accuracies for times T=70, T=95 and T=120, respectively.

Again multivariate and univariate LMs yielded similar results and therefore only the results

of the multivariate LMs are reported below.

GLMs GAMs

Equilibrium Climate Change Equilibrium Climate Change

Projection for T=70
intercept 1.04 ± 0.02 ∗∗ 0.94 ± 0.02 ∗∗ 0.94 ± 0.02 ∗∗ 0.86 ± 0.02 ∗∗

niche width s -0.12 ± 5e-3 ∗∗ -0.02 ± 5e-3 ∗∗ -0.09 ± 4e-3 ∗∗ 2e-3 ± 5e-3
host growth l -5e-4 ± 1e-4 ∗∗ -2e-4 ± 1e-4 -2e-4 ± 1e-4 9e-5 ± 1e-4

level of parasitism a -3e-3 ± 5e-4 ∗∗ -2e-3 ± 6e-4 ∗∗ -1e-3 ± 5e-4 ∗∗ -3e-4 ± 5e-4
dispersal distance h 0.01 ± 1e-3 ∗∗ 0.02 ± 8e-3 ∗∗ 0.01 ± 1e-3 ∗∗ 0.01 ± 1e-3 ∗∗

time elapse T -2e-3 ± 1e-4 ∗∗ -4e-3 ± 1e-4 ∗∗ -2e-3 ± 1e-4 ∗∗ -4e-3 ± 1e-4 ∗∗
sample size n 1e-4 ± 1e-5 ∗∗ 3e-5 ± 2e-5 1e-4 ± 1e-5 ∗∗ 3e-5 ± 7e-5 ∗∗

s× l 6e-4 ± 3e-4 ∗ 7e-4 ± 3e-4 ∗ 7e-4 ± 3e-4 ∗∗ 8e-4 ± 1e-5 ∗
s× a -3e-3 ± 1e-3 ∗∗ -3e-3 ± 1e-3 ∗
s× h 0.01 ± 3e-3 ∗∗ 5e-3 ± 3e-3 7e-3 ± 3e-3 ∗∗
s× T 7e-4 ± 2e-4 ∗∗ 4e-3 ± 3e-4 ∗∗ 4e-4 ± 2e-4 ∗ 4e-3 ± 2e-4 ∗∗
s× n -4e-7 ± 2e-7 ∗ -3e-6 ± 2e-7 -3e-7 ± 2e-7
l × a -7e-5 ± 3e-5 ∗ -9e-5 ± 3e-5 ∗∗ -5e-5 ± 3e-5
l × h -1e-4 ± 7e-5 -1e-4 ± 9e-5 -2e-4 ± 8e-5 ∗
l × T -1e-5 ± 6e-6
l × n
a× h -1e-3 ± 3e-4 ∗∗ -2e-3 ± 3e-4 ∗∗ -2e-3 ± 3e-4 ∗∗ -2e-3 ± 3e-4 ∗∗
a× T 1e-4 ± 2e-5 ∗∗ 1e-4 ± 3e-5 ∗∗ 1e-4 ± 2e-5 ∗∗ 1e-4 ± 3e-5 ∗∗
a× n -4e-6 ± 3e-6
h× T 4e-4 ± 6e-5 ∗∗ 5e-4 ± 7e-5 ∗∗ 4e-4 ± 6e-5 ∗∗ 6e-4 ± 7e-5 ∗∗
h× n 2e-5 ± 9e-6 ∗ 1e-5 ± 7e-6 2e-5 ± 8e-6 ∗
T × n -5e-6 ± 8e-7 ∗∗ -5e-6 ± 7e-7 ∗∗

r2 0.67 0.68 0.60 0.70

Table 5: Effects of ecological traits and interspecific interaction on accuracy of spatiotemporal prediction
of GLMs and GAMs for T=70. Given are the intercept and slopes of the multivariate linear
regression model(± SE), and the explained deviance r2. Significance is indicated by ∗ for p ≤ 0.05
and by ∗∗ for p ≤ 0.01. Parameters in bold remained significant (p ≤ 0.05) after Holm adjustment
for multiple comparison.

Equilibrium Figure 12 shows that average accuracies were poor and very similar for all

projection and model building times, with median values between 0.54 and 0.68.

AUCT.70 for GLMs and GAMs was significantly influenced by all and five predictors, respec-

tively (Table 5). Both GAM and GLM performance decreased with niche width, dispersal

distance, level of parasitism, and time elapse since spinup and increased with sample size.

GLM performance was additionally negatively effected by host growth. Niche width and

time elapse since spinup explained most of the deviance in prediction accuracies for both

model algorithms (Figure 14). The most important interactions for accuracies of both
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Figure 12: Distribution of AUC values for spatiotemporal predictions of GLMs and GAMs under equi-
librium. For every density plot time T is given at which the models were estimated. Red
T indicate spatial predictions. The dashed lines indicate AUC values the null model would
achieve (red) and above which models are considered to have predictive ability (green), re-
spectively.

models were dispersal distance with level of parasitism respective time elapse since spinup,

and additionally level of parasitism with time elapse since spinup in the case of GAMs.

All predictors exhibit a significant effect on AUCT.95 of both GLMs and GAMs (Table

6). Model performances decreased with niche width,host growth, dispersal distance, and

time elapse since spinup, and increased with sample size. GLM prediction accuracy was

negatively influenced by level of parasitism, GAM performance positively. Niche width

explained the largest part of the deviance in the prediction accuracies of both GLMs and

GAMs (Figure 14). The interaction between niche witdh and time elapse since spinup was

the most important one impacting the performances of both model algorithms, followed

by the interactions level of parasitsm with niche width respective dispersal distance in the

case of GAMs.

GAM AUCT.120 was significantly influenced by all predictors, GLM performance by all

predictors except level of parasitism (Table 7). Different to the earlier time steps, time

elapse since spinup exerted a positive impact on prediction accuracies. Niche width and

dispersal distance explained most of the deviance in GLM performance, level of parasitism

in GAM (Figure 14). The most important interactions for the prediction accuracy of GLMs

were niche width with time elapse since spinup and host growth with dispersal distance,
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GLMs GAMs

Equilibrium Climate Change Equilibrium Climate Change

Projection for T=95
intercept 0.90 ± 0.01 ∗∗ 0.69 ± 0.02 ∗∗ 0.79 ± 0.01 ∗∗ 0.55 ± 0.02 ∗∗

niche width s -0.12 ± 4e-3 ∗∗ -0.05 ± 5e-3 ∗∗ -0.08 ± 3e-3 ∗∗ -7e-3 ± 4e-3
host growth l -7e-4 ± 1e-4 ∗∗ -6e-4 ± 1e-4 ∗∗ -3e-4 ± 1e-4 ∗∗ -3e-4 ± 1e-4 ∗

level of parasitism a -1e-3 ± 4e-4 ∗∗ -9e-4 ± 5e-4 3e-3 ± 4e-4 ∗∗ 5e-3 ± 5e-4 ∗∗
dispersal distance h 0.01 ± 1e-3 ∗∗ 0.01 ± 1e-3 ∗∗ 8e-3 ± 1e-3 ∗∗ 5e-3 ± 1e-3 ∗∗

time elapse T -1e-3 ± 9e-5 ∗∗ -3e-4 ± 1e-4 ∗∗ -8e-4 ± 8e-5 ∗∗ -5e-5 ± 1e-4
sample size n 9e-5 ± 1e-5 ∗∗ 4-e5 ± 1e-5 ∗∗ 1e-4 ± 1e-5 ∗∗ 5e-5 ± 1e-5 ∗∗

s× l 5e-4 ± 2e-4 ∗ 4e-4 ± 3e-4 8e-4 ± 2e-4 ∗∗ 6e-4 ± 3e-4 ∗
s× a 5e-3 ± 8e-4 ∗∗ 6e-3 ± 1e-3 ∗∗
s× h -7e-3 ± 2e-3 ∗∗ -5e-3 ± 3e-3 ∗
s× T 1e-3 ± 2e-4 ∗∗ 1e-3 ± 2e-4 ∗∗ 1e-3 ± 2e-4 ∗∗ 8e-4 ± 2e-4 ∗∗
s× n -2e-7 ± 1e-7 -2e-7 ± 1e-7
l × a -6e-5 ± 2e-5 ∗ -5e-5 ± 3e-5
l × h
l × T 2e-5 ± 7e-6 ∗∗ 2e-5 ± 6e-6 ∗∗
l × n -9e-7 ± 6e-7
a× h -1e-3 ± 2e-4 ∗∗ -1e-3 ± 3e-4 ∗∗
a× T -4e-5 ± 3e-5 3e-5 ± 2e-5
a× n
h× T -4e-4 ± 7e-5 ∗∗ -4e-4 ± 6e-5 ∗∗
h× n 1e-5 ± 6e-6 ∗ 1e-5 ± 7e-6
T × n

r2 0.67 0.32 0.60 0.28

Table 6: Effects of ecological traits and interspecific interaction on accuracy of spatiotemporal prediction
of GLMs and GAMs for T=95. Given are the intercept and slopes of the multivariate linear
regression model(± SE), and the explained deviance r2. Significance is indicated by ∗ for p ≤ 0.05
and by ∗∗ for p ≤ 0.01. Parameters in bold remained significant (p ≤ 0.05) after Holm adjustment
for multiple comparison.

for GAMs level of parasitism with niche width respective dispersal distance.

Climate Change Figure 13 shows that prediction accuracies were generally better when

the gap between model building and projection time was small. The greatest differences

between the AUC values of the different model building times were found for AUCT.70.

Median prediction accuracies were poor ranging from 0.45 to 0.67.

GLM AUCT.70 was significantly influenced by four predictors, niche width, dispersal dis-

tance, level of parasitism, and time elapse since spinup. GAM AUCT.70 was significantly

effected only by dispersal distance and time elapse since spinup (Table 5). Time elapse

since spinup explained most of the deviance in model performances (Figure 14). The most

important interactions were time elapse since spinup with niche width respective dispersal

distance.
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Figure 13: Distribution of AUC values for spatiotemporal predictions of GLMs and GAMs under cli-
mate change. For every density plot time T is given at which the models were estimated.
Red T indicate spatial predictions. The dashed lines indicate AUC values the null model
would achieve (red) and above which models are considered to have predictive ability (green),
respectively.

GLMs GAMs

Equilibrium Climate Change Equilibrium Climate Change

Projection for T=120
intercept 0.60 ± 0.01 ∗∗ 0.26 ± 0.01 ∗∗ 0.59 ± 0.02 ∗∗ 0.17 ± 0.01 ∗∗

niche width s -0.04 ± 3e-3 ∗∗ 0.02 ± 3e-3 ∗∗ -0.05 ± 9e-3 ∗∗ 0.06 ± 3e-3 ∗∗
host growth l -7e-4 ± 1e-4 ∗∗ 2e-5 ± 9e-5 -2e-3 ± 3e-4 ∗∗ 2e-4 ± 9e-5

level of parasitism a -2e-4 ± 4e-4 -2e-3 ± 3e-4 ∗∗ 5e-3 ± 3e-4 ∗∗ 7e-3 ± 3e-4 ∗∗
dispersal distance h 0.01 ± 1e-3 ∗∗ 2e-3 ± 9e-4 ∗ 6e-3 ± 8e-4 ∗∗ -3e-3 ± 9e-4 ∗∗

time elapse T 3e-4 ± 8e-5 ∗∗ 2e-3 ± 7e-5 ∗∗ 4e-4 ± 7e-5 ∗∗ 2e-3 ± 8e-5 ∗∗
sample size n 5e-5 ± 1e-5 ∗∗ 2e-5 ± 9e-6 ∗ 6e-5 ± 8e-6 ∗ 2e-5 ± 9e-6 ∗

s× l -4e-4 ± 2e-4 ∗ 6e-4 ± 2e-4 ∗∗
s× a -3e-3 ± 7e-4 ∗∗ 6e-3 ± 6e-4 ∗∗ 4e-3 ± 7e-4 ∗∗
s× h 0.01 ± 2e-3 ∗∗ -4e-3 ± 2e-3 ∗∗ 8e-3 ± 2e-3 ∗∗
s× T 6e-4 ± 2e-4 ∗∗ -3e-3 ± 1e-4 ∗∗ 5e-4 ± 1e-4 ∗∗ -3e-3 ± 2e-4 ∗∗
s× n -2e-7 ± 1e-7
l × a -5e-5 ± 2e-5 ∗ -3e-5 ± 2e-5 4e-5 ± 2e-5 ∗
l × h -2e-4 ± 6e-5 ∗∗ -2e-4 ± 5e-5 ∗∗
l × T -1e-5 ± 5e-6 ∗ 7e-6 ± 4e-6 7e-6 ± 4e-6
l × n -8e-7 ± 6e-7 -1e-6 ± 5e-7 ∗
a× h -4e-4 ± 2e-4 ∗ -1e-3 ± 2e-4 ∗∗ -2e-3 ± 2e-4 ∗∗
a× T -7e-5 ± 2e-5 ∗∗
a× n
h× T -5e-4 ± 4e-5 ∗∗ -1e-4 ± 4e-5 ∗∗ -5e-4 ± 4e-5 ∗∗
h× n 1e-5 ± 6e-6 ∗ 1e-5 ± 5e-6 ∗∗
T × n 1e-6 ± 5e-7 ∗∗ 3e-6 ± 4e-7 ∗∗ 9e-7 ± 4e-7 ∗ 3e-6 ± 4e-7 ∗∗

r2 0.38 0.71 0.49 0.78

Table 7: Effects of ecological traits and interspecific interaction on accuracy of spatiotemporal prediction
of GLMs and GAMs for T=120. Given are the intercept and slopes of the parsimonious multi-
variate linear regression model(± SE), and the explained deviance r2. Significance is indicated
by ∗ for p ≤ 0.05 and by ∗∗ for p ≤ 0.01. Parameters in bold remained significant (p ≤ 0.05)
after Holm adjustment for multiple comparison.
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Figure 14: Proportion of explained deviance achieved by univariate LMs estimated for the spatiotem-
poral prediction accuracy. Predictor variables are niche width (s), host growth (l), level of
parasitism (a), dispersal distance (h), time elapse since spinup (T), and sample size (n).

GLM AUCT.95 was significantly influenced by five predictors, niche width, host growth, dis-

persal distance, time elapse since spinup, and sample size, while the accuracy of GAMs was

effected by level of parasitism, dispersal distance and sample size (Table 6). Niche width

explained most of the deviance in GLM performance, level of parasitism in GAM (Figure

14). The most important interaction influencing both GLM and GAM performance was

dispersal distance with time elapse since spinup, followed by niche width with time elapse
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since spinup for GLMs and by niche width with level of parasitism for GAMs.

AUCT.120 for GLMs was significantly impacted by three predictors, niche width, level of

parasitism and time elapse since spinup. GAM performance was additionally influenced

by dispersal distance and sample size (Table 7). Analogous to the equilibrium situation

model performance was positively influenced by time elapse since spinup, which concur-

rently explained most of the deviance in both GLM and GAM performance (Figure 14).

Different to all other cases niche width positively influenced AUCT.120 of both GLMs and

GAMs. The most important interactions were time elapse since spinup with niche width

respective dispersal distance.

Peculiarly, explained deviances of the LMs for AUCT.95 under climate change and for

AUCT.120 under equilibrium were much lower than for the remaining LMs (Tables 6 and

7).
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4 Discussion

4.1 Dynamic Model

Hargrove et al. (2002) found that experts were not able to distinguish between maps of

real landscapes and synthetic maps produced by the midpoint displacement algorithm.

However, my study shows that this fractal algorithm is unsuitable for creating structured

landscape features such as flow paths. It produces a geomorphologically young landscape

with a chaotic river network, causing water availability to be distributed very heteroge-

neously at a small spatial scale. In respect to the dynamic population model this means

that habitat quality changes remarkably over very short distances, which may reduce real-

ism in the virtual system. Further development of the fractal algorithm is necessary. For

instance it could be supplemented by an ageing component.

The dynamic model ’spins up’ for 70 years to ensure a long-term equilibrium between the

host population and its environment. Though the climate is in equilibrium, interannual

variations and stochasticity in the system cause great variations in mean host abundances

(Figure 15). However, time series analysis reveiled neither a trend nor seasonality in host

abundances, implying that the host population really is in long-term equilibrium with its

environment.
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Figure 15: Long-term variation of mean host abundance (grey). The linear regression line fitted to time
and mean host abundance (red) shows no trend.
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Under the climate change scenarios the fraction of suitable habitat in the virtual landscape

increased because sites at higher elevations became suitable due to rising temperatures,

and formerly occupied habitat remained suitable within the observed time-frame. This is

of course only one possibility of changing habitats under climate change. Habitats may

also shift along environmental gradients or decrease.

4.2 Species Distribution Model

4.2.1 Overall Model Performance

Apparent model performance was overoptimistic, a fact already pointed out by other au-

thors (Fielding & Bell, 1997; McPherson & Jetz, 2007; McPherson et al., 2004; Reineking

& Schröder, 2003). Moreover, the difference between apparent model performance and ex-

ternal validations is an indicator for the degree of overfitting (Stockwell & Peterson, 2002).

I expected GAMs to be more overfitted than GLMs, which is supported by my findings.

But surprisingly, GAM prediction accuracy and thus transferability was still better than

for GLMs.

Maximum explained deviances of GLMs and GAMs were low on average indicating that av-

erage detectability of the species-habitat relationship was also low despite ideal conditions.

Great proportions of residual deviances persisted due to environmental and demographic

stochasticity. This is consistent with findings of Tyre et al. (2001).

Average model accuracies were low compared to real field studies. For instance McPher-

son & Jetz (2007) reported excellent average model accuracies for distribution models of

1329 bird species in southern and eastern Africa constructed with logistic regression and

externally validated on withheld test data (mean AUC=0.89). Luoto et al. (2006) ex-

plored the distribution of 98 butterfly species on a national scale in Finland with GAMs

and found acceptable average model accuracies (mean AUC=0.79) derived from cross-

validation. Rudner et al. (2007) modelled the distribution of 52 plant species on a fine

scale with GLMs and also reported excellent average accuracies based on internal valida-

tion with bootstrapping. All these studies yielded better model accuracies than found in
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this study regardless of spatial scale. Hence for a certain reason the performance of species

distribution models is inferior in my virtual system compared to real systems. I ascribe

these poor model results to the high stochasticity in the model system.

Differences between calibration statistics of external validation on sampled and entire

datasets, respectively, were attributable to species prevalence. While I controlled for preva-

lence in the sampled datasets, the natural prevalence of the entire data was much lower

leading to consistent overestimation and bias. The bias was smaller under climate change

because prevalence increased with increasing species range.

The negative correlation between prediction accuracy and mean host abundance indicated

that spatial population and source-sink dynamics exerted considerable influence on the per-

formance of species distribution models. In the virtual dynamic system host abundance is

proportionate to habitat quality. Hence, when mean host abundance decreases, the major-

ity of hosts will be located in higher quality habitats. Correspondingly spatial population

and source-sink dynamics become more pronounced when host abundance increases, and

lower and higher quality habitat are used simultaneously. My analyses shows that in the

latter case the static model was less successful in depicting the species-habitat relationship,

and prediction accuracy decreased.

4.2.2 Effects on Spatial Prediction Accuracies

Equilibrium Significance of the predictor time elapse since spinup was attributable to

spatial population dynamics. Mean host abundance increased with increasing time elapse

since spinup and caused a decline in prediction accuracies. My results regarding niche width

support the findings of McPherson & Jetz (2007), Segurado & Araujo (2004), and Stockwell

& Peterson (2002) who reported decreasing spatial prediction accuracies with increasing

range sizes. Model performance decreased with host growth and dispersal distance because

both enhanced source-sink dynamics.

The positive effect of level of parasitism on GAMs and negative on GLMs can be related

to the frequency that parasitoids were selected as predictors in the final GLMs and GAMs.
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Incidence of parasitoids was kept as predictor in 69% (4992/7200) of the final GAMs and

in 24% (1758/7200) of the final GLMs. When level of parasitism is low, parasitoids and

hosts can coexist in a cell, while high levels of parasitism lead to complete exploitation

of the hosts. Hence, in the case of low predation rates models including and excluding

the incidence of parasitoids as predictor, respectively, should perform equally well, as my

results support (Figure 11). However, with increasing predation and local populations

going extinct, the inclusion of this predictor was crucial to distinguish between suitable

but exploited and unsuitable habitat. This difference between GLM and GAM performance

seems to be a methodological artefact in the model selection procedure. The first step in

GLM model selection, the exclusion of predictors whose univariate model yields p > 0.25,

caused this discrepancy. Thus in this instance, it was not the smoothing technique, but

the different selection procedures making GAMs superior to GLMs.

Climate Change In contrast to the exerted influence under equilibrium GAM perfor-

mance increased with dispersal distance, because higher dispersal distances promote a

faster realisation of a new equilibrium situation. Also, average spatial prediction accuracy

of both GLMs and GAMs was lower under climate change suggesting reduced detectability

of the species-habitat relationship due to non-equilibrium dynamics. The lower explained

deviances in the LMs under climate change also imply that the variance in prediction ac-

curacies could not be explained conveniently by the ecological characteristics, time elapse

and sample size alone, but had been influenced by other dynamics uncoupled from the

predictors, i. e. demographic and environmental stochasticity.

4.2.3 Effects on Spatiotemporal Prediction Accuracies

Equilibrium Under equilibrium conditions spatiotemporal prediction accuracies were sim-

ilar to the spatial ones. Thus by and large both GLM and GAM models were transferable

in time, though the results also imply that predictions made for times nearer the model

building time were generally better. This effect is attributable to spatial population and

source-sink dynamics. Variations in prediction accuracies were governed by the same eco-
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logical processes as the spatial predictions.

Climate Change Under climate change the time span between model building and pre-

diction was crucial for prediction accuracy, especially when predicting (past) species dis-

tribution for an equilibrium situation although the model was build under climate change.

Related to that temporal effect were the interactions between niche width respective dis-

persal distance and time elapse since spinup, which were important in all spatiotemporal

predictions under climate change. The direction of influence of niche width and dispersal

distance changed with time, i. e. both had a negative effect on prediction accuracy when

projection time was near model building time. These effects were reversed when the time

span between model building and prediction was increased. Predictions were then better

for wide-ranging and far-dispersing species, because they exhibited smaller range shifts.

Explained deviances for AUCT.95 under climate change and for AUCT.120 under equilib-

rium were comparably low, i. e. great proportions of variance in the prediction accuracies

were not attributable to any predictors but must have been caused by stochasticity in the

dynamic system.
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5 Conclusion

This virtual species approach yielded new insights on how departures from the assump-

tions underlying species distribution modelling, and population dynamics may affect model

outcome. Throughout I tried to control for methodological drawbacks and therefore infer

that my findings describe real effects on the accuracy of species distribution models.

I have shown that departures from equilibrium can impair spatiotemporal predictions, and

how ecological characteristics and processes govern these effects. The equilibrium state of

the species and the readiness to gain equilibrium are crucial for the validity and transfer-

ability of species distribution models. Furthermore, prediction accuracy varies with the

intensity of spatial population and source-sink dynamics. And above all, great proportions

of residual deviances may persist, caused by system immanent and population intrinsic

stochasticity.

I see this study as a provisional guide as to when the application of species distribution

models and different model algorithms are more or less reasonable. In equilibrium situa-

tions, spatial and spatiotemporal prediction accuracies increase primarily with decreasing

niche width, and dispersal distance. Less pronounced spatial population and source-sink

dynamics, e. g. through decreasing intrinsic growth rates, are also beneficial for prediction

accuracies, as are increasing sample sizes and the inclusion of biotic interactions as pre-

dictor. Under climate change spatial predictions are more dependable for far-dispersing

species. Spatiotemporal predictions under climate change are reliable only when made for

short time intervals.

The great proportions of unexplained deviances and the poor prediction accuracies achieved,

imply that stochasticity in the system should be accounted for. The results also strongly

recommend to link or supplement the species distribution models with more mechanistic,

process-based models, especially when dealing with non-equilibrium situations. Important

points to consider are the strength of spatial population and source-sink dynamics and their

fluctuations over time, dispersal, as well as demographic and environmental stochasticity.

It also became apparent once more that expert knowledge is inevitable because automatised
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modelling procedures may fail to recognise important predictors.
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A Evolution of Population Abundances
Animated graphics of the evolution of population abundances over time can be found on
the enclosed data DVD.

B Univariate LMs

Equilibrium Climate Change

Predictor Intercept Parameter r2 Intercept Parameter r2

GLMs
niche width 0.80 ± 0.01 -0.09 ± 6e-3 ∗∗ 0.27 0.70 ± 0.01 -0.05 ± 6e-3 ∗∗ 0.11

hosts growth rate 0.64 ± 0.01 -7e-4 ± 2e-4 ∗∗ 0.02 0.60 ± 0.01 -2e-4 ± 2e-4 2e-3
level of parasitism 0.62 ± 5e-3 -2e-3 ± 7e-4 ∗∗ 0.01 0.60 ± 5e-3 -3e-3 ± 7e-4 ∗∗ 0.02
dispersal distance 0.59 ± 5e-3 0.01 ± 2e-3 ∗∗ 0.04 0.58 ± 5e-3 2e-3 ± 2e-3 2e-3

time elapse 0.81 ± 0.01 -2e-3 ± 1e-4 ∗∗ 0.24 0.77 ± 0.01 -2e-3 ± 1e-4 ∗∗ 0.21
sample size 0.58 ± 6e-3 1e-4 ± 2e-5 ∗∗ 0.03 0.56 ± 6e-3 1e-4 ± 2e-5 ∗∗ 0.04

GAMs
niche width 0.74 ± 0.01 -0.06 ± 5e-3 ∗∗ 0.18 0.66 ± 0.01 -0.02 ± 5e-3 ∗∗ 0.03

hosts growth rate 0.63 ± 9e-3 -3e-4 ± 2e-4 4e-3 0.61 ± 8e-3 5e-5 ± 1e-4 1e-4
level of parasitism 0.61 ± 4e-3 1e-3 ± 6e-4 ∗ 6e-3 0.59 ± 4e-3 3e-3 ± 6e-4 ∗∗ 0.04
dispersal distance 0.61 ± 4e-3 4e-3 ± 2e-3 ∗∗ 0.01 0.62 ± 4e-3 -5e-3 ± 1e-3 ∗∗ 0.01

time elapse 0.760 ± 0.01 -2e-3 ± 1e-4 ∗∗ 0.18 0.70 ± 0.01 -1e-3 ± 1e-4 ∗∗ 0.09
sample size 0.59 ± 5e-3 1e-4 ± 2e-5 ∗∗ 0.06 0.58 ± 5e-3 9e-5 ± 1e-5 ∗∗ 0.05

Table B.1: Effects of ecological traits and interspecific interaction on accuracy of spatial prediction of
GLMs and GAMs estimated on sampled and validated against entire data. Given are the
intercept and slope of the univariate linear regressions (± SE), and the explained deviance
r2. Significance is indicated by ∗ for p ≤ 0.05 and by ∗∗ for p ≤ 0.01. Parameters in bold
remained significant (p ≤ 0.05) after Holm adjustment for multiple comparison.
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Equilibrium Climate Change

Predictor Intercept Parameter r2 Intercept Parameter r2

Projection for T=70

GLMs
niche width 0.85 ± 0.01 -0.12 ± 6e-3 ∗∗ 0.32 0.59 ± 0.02 -0.02 ± 9e-3 ∗ 7e-3

host growth rate 0.64 ± 0.01 -5e-4 ± 2e-4 ∗ 6e-3 0.56 ± 0.01 -2e-4 ± 3e-4 9e-4
level of parasitism 0.63 ± 6e-3 -3e-3 ± 9e-4 ∗∗ 0.02 0.56 ± 7e-3 -2e-3 ± 1e-3 5e-3
dispersal distance 0.58 ± 6e-3 0.01 ± 2e-3 ∗∗ 0.05 0.51 ± 7e-3 0.02 ± 3e-3 ∗∗ 0.06

time elapse 0.82 ± 0.02 -2e-3 ± 2e-4 ∗∗ 0.18 0.93 ± 0.02 -4e-3 ± 2e-4 ∗∗ 0.43
sample size 0.58 ± 7e-3 1e-4 ± 2e-5 ∗∗ 0.03 0.55 ± 8e-3 3e-5 ± 3e-5 1e-3

GAMs
niche width 0.80 ± 0.01 -0.09 ± 6e-3 ∗∗ 0.25 0.55 ± 0.02 2e-3 ± 9e-3 6e-5

host growth rate 0.62 ± 0.01 -2e-4 ± 2e-4 1e-3 0.55 ± 0.01 9e-5 ± 2e-4 2e-4
level of parasitism 0.62 ± 5e-3 -1e-3 ± 8e-4 5e-3 0.55 ± 7e-3 -3e-4 ± 9e-4 2e-4
dispersal distance 0.59 ± 5e-3 0.01 ± 2e-3 ∗∗ 0.04 0.52 ± 7e-3 0.01 ± 2e-3 ∗∗ 0.04

time elapse 0.79 ± 0.01 -2e-3 ± 2e-4 ∗∗ 0.17 0.91 ± 0.02 -4e-3 ± 2e-4 ∗∗ 0.45
sample size 0.58 ± 6e-3 1e-4 ± 2e-5 ∗∗ 0.05 0.55 ± 8e-3 3e-5 ± 2e-5 2e-3

Projection for T=95

GLMs
niche width 0.82 ± 0.01 -0.12 ± 5e-3 ∗∗ 0.44 0.66 ± 0.01 -0.05 ± 5e-3 ∗∗ 0.13

host growth rate 0.63 ± 0.01 -7e-4 ± 2e-4 ∗∗ 0.02 0.58 ± 9e-3 -6e-4 ± 2e-4 ∗∗ 0.02
level of parasitism 0.59 ± 5e-3 -1e-3 ± 7e-4 2e-3 0.56 ± 4e-3 -9e-4 ± 6e-4 3e-3
dispersal distance 0.56 ± 5e-3 0.01 ± 2e-3 ∗∗ 0.08 0.53 ± 4e-3 0.01 ± 2e-3 ∗∗ 0.07

time elapse 0.68 ± 0.02 -1e-3 ± 2e-4 ∗∗ 0.05 0.58 ± 0.01 -3e-4 ± 1e-4 ∗ 8e-3
sample size 0.57 ± 6e-3 9e-5 ± 2e-5 ∗∗ 0.03 0.54 ± 5e-3 4e-5 ± 2e-5 ∗ 8e-3

GAMs
niche width 0.76 ± 9e-3 -0.08 ± 4e-3 ∗∗ 0.32 0.58 ± 0.01 -7e-3 ± 5e-3 2e-3

host growth rate 0.62 ± 8e-3 -3e-4 ± 2e-4 5e-3 0.58 ± 8e-3 -3e-4 ± 1e-4 4e-3
level of parasitism 0.58 ± 4e-3 3e-3 ± 6e-4 ∗∗ 0.04 0.54 ± 4e-3 5e-3 ± 5e-4 ∗∗ 0.09
dispersal distance 0.58 ± 4e-3 8e-3 ± 2e-3 ∗∗ 0.04 0.56 ± 4e-3 5e-3 ± 1e-3 ∗∗ 0.02

time elapse 0.68 ± 0.01 -8e-4 ± 1e-4 ∗∗ 0.05 0.57 ± 0.01 -5e-5 ± 1e-4 2e-4
sample size 0.57 ± 5e-3 1e-4 ± 2e-5 ∗∗ 0.06 0.56 ± 5e-3 5e-5 ± 1e-5 ∗∗ 0.01

Projection for T=120

GLMs
niche width 0.63 ± 8e-3 -0.04 ± 4e-3 ∗∗ 0.13 0.47 ± 0.01 0.02 ± 6e-3 ∗∗ 0.02

host growth rate 0.59 ± 7e-3 -7e-4 ± 1e-4 ∗∗ 0.05 0.51 ± 9e-3 2e-5 ± 2e-4 2e-5
level of parasitism 0.55 ± 3e-3 -2e-4 ± 5e-4 3e-4 0.52 ± 4e-3 -2e-3 ± 6e-4 ∗∗ 0.01
dispersal distance 0.52 ± 3e-3 0.01 ± 1e-3 ∗∗ 0.12 0.51 ± 5e-3 2e-3 ± 2e-3 3e-3

time elapse 0.52 ± 0.01 3e-4 ± 1e-4 ∗∗ 0.01 0.31 ± 0.01 2e-3 ± 1e-4 ∗∗ 0.34
sample size 0.54 ± 4e-3 5e-5 ± 1e-5 ∗∗ 0.02 0.51 ± 5e-3 2e-5 ± 2e-5 2e-3

GAMs
niche width 0.60 ± 8e-3 -0.02 ± 4e-3 ∗∗ 0.02 0.43 ± 0.01 0.06 ± 6e-3 ∗∗ 0.10

host growth rate 0.59 ± 6e-3 -4e-4 ± 1e-4 ∗∗ 0.02 0.54 ± 0.01 2e-4 ± 2e-4 1e-3
level of parasitism 0.54 ± 3e-3 5e-3 ± 4e-4 ∗∗ 0.18 0.51 ± 5e-3 7e-3 ± 7e-4 ∗∗ 0.12
dispersal distance 0.56 ± 3e-3 6e-3 ± 1e-3 ∗∗ 0.04 0.55 ± 5e-3 -3e-3 ± 2e-3 4e-3

time elapse 0.54 ± 9e-3 4e-4 ± 1e-4 ∗∗ 0.02 0.33 ± 0.01 2e-3 ± 1e-4 ∗∗ 0.27
sample size 0.56 ± 4e-3 6e-5 ± 1e-5 ∗∗ 0.04 0.54 ± 6e-3 2e-5 ± 2e-5 2e-3

Table B.2: Effects of ecological traits and interspecific interaction on accuracy of spatiotemporal predic-
tion of GLMs and GAMs. Given are the intercept and slope of the univariate linear regressions
(± SE), and the explained deviance r2. Significance is indicated by ∗ for p ≤ 0.05 and by ∗∗

for p ≤ 0.01. Parameters in bold remained significant (p ≤ 0.05) after Holm adjustment for
multiple comparison.
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Zusammenfassung

Klima- und Landnutzungswandel bergen zunehmende Gefahren für Arten und Biodiver-

sität. Die Vorhersage möglicher Auswirkungen dieser Veränderungen gewinnt daher immer

mehr an Relevanz, z. B. für die Naturschutzplanung. Statistische Habitateignungsmod-

elle wurden in diesem Zusammenhang häufig eingesetzt. Dennoch wird deren Verwen-

dung oftmals kritisiert aufgrund ihrer impliziten Annahmen eines (Quasi-) Gleichgewichtes

und gesättigter Bruthabitate. Außerdem werden demographische Prozesse und biotis-

che Interaktionen nicht explizit in den Habitateignungsmodellen berücksichtigt. In dieser

Studie habe ich versucht, die Gültigkeit der zugrunde liegenden Annahmen sowie die Ef-

fekte ökologischer Prozesse und transienter Dynamiken auf die Vorhersagegüte von Habi-

tateignungsmodellen zu überprüfen, und zwar mithilfe eines virtuellen dynamischen Sys-

tems. Dazu habe ich ein räumlich explizites Multispezies populationsdynamisches Mod-

ell entwickelt, welches art- und interspezifische ökologische Prozesse, demographische und

Umweltstochastizität sowie Umweltwandel berücksichtigt. Ein virtueller Ökologe hat in

verschiedenen Szenarien Stichproben erhoben und mithilfe verallgemeinerter linearer (GLMs)

und verallgemeinerter additiver Modelle (GAMs) Habitateignungsmodelle geschätzt. Mit

diesen wurden räumliche und raumzeitliche Vorhersagen der Artverbreitung erstellt und

gegen die simulierte wahre Verbreitung validiert. Die resultierenden Vorhersagegüten

wurden dann in Beziehung gesetzt zu den vorherrschenden ökologischen Prozessen und

zeitlichen Dynamiken.

Die Ergebnisse zeigen, dass der Gleichgewichtszustand und die Bereitwilligkeit, in einen

Gleichgewichtszustand zurückzukehren, entscheidend sind für die Gültigkeit und Übertrag-

barkeit von Habitateignungsmodellen. Außerdem werden diese Effekte durch ökologische

Charakteristika und Prozesse beeinflusst. Entscheidend sind dabei vor allem die ökologische

Potenz der Arten und ihr Ausbreitungsverhalten. Vorhersagegüten reagierten darüber hin-

aus empfindlich auf räumliche Populations- sowie Quellen-Senken-Dynamiken. So sanken

sie mit zunehmender Nutzung von Habitaten geringerer Qualität. Demographische und

Umweltstochastizität erschwerten außerdem die Erklärung großer Anteile an Varianz im
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Vorkommen der Arten. Diese Ergebnisse waren konsistent für die verschiedenen Mo-dell-

algorithmen. Meine Analysen stellen somit eine vorläufige Orientierungshilfe dar, unter

welchen Umständen die Verbreitung von Arten zuverlässig durch Habitateigungsmodelle

vorhergesagt werden kann und wo Schnittstellen zu mechanistischen, prozessbasierten Mod-

ellen vonnöten sind.

49



Danksagung

An dieser Stelle möchte ich allen danken, die direkt oder indirekt zum Gelingen dieser

Arbeit beigetragen haben.

Zuallererst möchte ich Dr. Boris Schröder und Prof. Dr. Florian Jeltsch danken für

die Bereitstellung des Diplomarbeitsthemas, ihre Betreuung und ihr Vertrauen in meine

Fähigkeiten bei der Anfertigung dieser Arbeit. Dr. Boris Schröder sei besonders dafür

gedankt, dass er sich trotz engen Zeitplans immer ausführlich Zeit genommen hat, stets

mit mir Ideen und Probleme ausgiebig diskutiert hat, nicht nur in allen fachlichen Fragen,

sondern auch den kleinen und großen Sorgen, die eine solche Arbeit begleiten.

Besonders bedanken möchte ich mich auch bei Andreas Bauer, dessen technische Unter-

stützung, Verständnis und Hilfe bei der Bereitstellung von Rechenressourcen, beträchtlich

zum Gelingen dieser Arbeit (und meiner persönlichen Aufmunterung) beigetragen haben.

Weiterhin gebührt mein Dank meinen Freunden und meiner Familie, die mich unterstützt

und ermutigt haben, wo es nötig war. Ohne die in allen Lebenslagen umfangreiche Unter-

stützung meiner Eltern, Marianne und Günter Zurell, wäre diese Arbeit und der (hoffentlich

erfolgreiche) Abschluss meines Studiums nicht möglich gewesen. Und zuletzt, jedoch für

mich an erster Stelle, danke ich meinem Freund, Andreas Passing, dass er mir in den let-

zten Jahren immer hilfreich zur Seite gestanden und mich immer wieder neu aufgebaut

und motiviert hat, vor allem jedoch für seine Ruhe und Geduld.

50



Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass ich die von mir eingereichte Diplomarbeit selb-

ständig verfasst und ausschließlich die angegebenen Hilfsmittel benutzt habe.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde

vorgelegt und auch nicht veröffentlicht.

Ort, Datum

Unterschrift


