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Species’ ranges are primarily limited by the physiological (abiotic) tolerance of the species, described by their fundamental 
niche. Additionally, demographic processes, dispersal, and interspecific interactions with other species are shaping species 
distributions, resulting in the realised niche. Understanding the complex interplay between these drivers is vital for making 
robust biodiversity predictions to novel environments. Correlative species distribution models have been widely used to 
predict biodiversity response but also remain criticised, as they are not able to properly disentangle the abiotic and biotic 
drivers shaping species’ niches. Recent developments have thus focussed on 1) integrating demography and dispersal into 
species distribution models, and on 2) integrating interspecific interactions. Here, I review recent demographic and multi-
species modelling approaches and discuss critical aspects of these models that remain underexplored in general and in respect 
to birds, for example, the complex life histories of birds and other animals as well as the scale dependence of interspecific 
interactions. I conclude by formulating modelling guidelines for integrating the abiotic and biotic processes that limit 
species’ ranges, which will help to disentangle the complex roles of demography, dispersal and interspecific interactions 
in shaping species niches. Throughout, I pinpoint complexities of avian life cycles that are critical for consideration in the 
models and identify data requirements for operationalizing the different modelling steps.

Mitigating rapid biodiversity loss is one of the most vital 
challenges today. Even under most conservative assump-
tions, we are currently experiencing biodiversity losses that 
are up to 100 times higher than the natural extinction rate 
(Ceballos et al. 2015). And even worse, biodiversity loss is 
predicted to further increase under climate change (Pereira 
et al. 2010). The consequences are difficult to gauge. 
Losing single species could have cascading effects on entire 
ecosystems and could mean loss of important ecosystem 
functions and services (Cardinale et al. 2012). For example, 
birds provide important services by transporting nutrients, 
by dispersing seeds or by acting as disease control agents 
through scavenging.

Models have established as important tools in ecology 
that help testing hypotheses about biodiversity functioning 
and that help making predictions of potential dynamics, for 
example under climate change. Correlative species distribu-
tion models (SDMs) are by far the most widely used model-
ling tool in biodiversity research as they are comparably easy 
to use and work with relatively simple species occurrence 
data (Guisan and Zimmermann 2000, Elith and Leathwick 
2009). However, the value of SDMs in predicting climate 
change induced biodiversity changes has been questioned 
for several reasons. For example, SDMs implicitly assume 
the observed species–environment relationship to be at 
equilibrium and to remain constant under future climate. 

They thus ignore any transient demographic and disper-
sal dynamics, extinction debts, and changing interspecific 
interactions (Araújo and Guisan 2006, Zurell et al. 2009, 
2016a). Also, combining single-species SDMs to construct 
site-specific species lists currently fails to correctly predict 
community assemblage, which may in part relate to unac-
counted interspecific interactions (Baselga and Araújo 2010, 
Guisan and Rahbek 2011) as well as to scaling issues (Zurell 
et al. 2016b). Consequently, we currently observe two major 
research avenues aimed at 1) developing more dynamic 
and demographic approaches to predict species response to 
environmental change but which hitherto focus on single 
species only, and 2) developing multi-species models that 
account for interspecific interactions but which hitherto 
ignore either transient dynamics and demography or ignore 
spatial dynamics.

In this review, I will summarise the current state of the art 
in these modelling approaches and discuss necessary model 
developments to meet the challenges of understanding and 
predicting biodiversity and specifically avian diversity under 
current and future climates. First, I will revisit the theoretical 
background on the ecological niche concept and its relation 
to community assembly, and give an overview on current 
demographic models and multi-species models. I will discuss 
limitations of these approaches and promising future direc-
tions, especially in relation to the complex life histories of 
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birds. Because of the vast empirical knowledge on avian sys-
tems and the high-quality data, birds offer unique possibili-
ties of developing and refining more realistic but also more 
generic models for predicting biodiversity dynamics under 
global change (Engler et al. 2017).

The ecological niche concept and community 
assembly

Central to biodiversity research is the notion that life is not 
evenly distributed on Earth but species occur in distinct 
places and habitats. The geographic area where a species can 
be found is usually termed the species range. But what limits 
this range? We know that most species are fundamentally 
constrained by their physiological tolerance to environmen-
tal conditions and their resource requirements. For example, 
birds could be constrained by temperature due to its effect 
on thermoregulatory processes and on resource availability 
(Methorst et al. 2017). This relationship between species 
occurrence and environment is called the species niche and 
comprises all environmental conditions where the species 
can exist indefinitely exhibiting a positive net growth rate r 
(Hutchinson 1957).

Inferring the ecological niche of species from observa-
tional data is challenging because biogeographic history, 
demographic processes and interspecific interactions also 
affect the presence of a species. For example, the tempera-
ture extremes found within the geographic range of a spe-
cies may be less than what the species could physiologically 
tolerate and thus less than what could be measured in a 
laboratory. Hutchinson distinguished the fundamental and 
the realised niche of a species. The fundamental niche refers 
to all abiotic constraints that allow positive population 
growth. Originally, the realised niche was formally described 
as those parts of the fundamental niche to which the species 
is confined due to competitive exclusion and other nega-
tive interactions (Hutchinson 1957). Refined niche theory 
acknowledges several more processes including demographic 
and community processes that 1) constrain and thus shrink 
the realised relative to the fundamental niche, including dis-
persal limitation and negative interspecific interactions (Fig. 
1a), and processes that 2) expand the realised relative to the 
fundamental niche, including source-sink dynamics, time-
delayed extinctions and facilitation (Fig. 1b) (Pulliam 2000, 
Bruno et al. 2003, Holt et al. 2005, Schurr et al. 2012, Diez 
et al. 2014). Also, (genetic and behavioural) adaptation 
may lead to expanded niches under climate change but, as 
pointed out above, most of the modelling approaches that I 
will discuss here focus on contemporary demographic and 
community processes. Because of these dynamic processes, 
the realised niche may vary across time and space (Holt 
2009), and also across the life cycle of species (Taboada 
et al. 2013). For example, species may utilize different 
habitats and resources for key events within their life cycle 
such as reproduction, overwintering and dispersal (Naves 
et al. 2003, Holt 2009, Jacob et al. 2015, Rotllan-Puig and 
Traveset 2016). This is most prominent in migratory birds 
that move between distant regions on a seasonal basis, and 
for which both seasonal niche-tracking and niche-switching 
have been reported (Laube et al. 2015, Gómez et al. 2016, 
Eyres et al. 2017).

Community assembly theory is closely linked to the niche 
concept. Often, the metaphor of filters (Weiher and Keddy 
1999) is used to describe how species from the regional spe-
cies pool colonise and interact to form local communities 
(Fig. 2; Chase 2003, Leibold et al. 2004, HilleRisLambers 
et al. 2012). First, the dispersal filter refers to spatial and 
stochastic processes and determines whether a species can 
reach a specific geographic location depending on its disper-
sal capacity and chance events. Second, the environmental 
filter (or abiotic niche filter) selects those species that can 
establish and maintain positive population growth under the 
prevailing environmental conditions. Third, the biotic niche 
filter describes the processes of intra- and interspecific inter-
actions that may affect a species’ presence in a location. In 
reality, these filters do not simply act as one-directional sieves 
but complex feedbacks exist between species and filter levels, 
meaning that the species themselves can also affect the filter 
processes (HilleRisLambers et al. 2012). BAM (biotic, abi-
otic, movements) diagrams describe the same three processes 
affecting species’ presence in a location, and more explic-
itly emphasise the interplay between these (Soberón and  
Nakamura 2009).

The concepts of limiting similarity and niche partitioning 
are important to understand long-term coexistence between 
species in local communities (MacArthur and Levins 1967). 
Contemporary coexistence theory formalises these ideas in 
a mechanistic framework that distinguishes between niche 
differences and differences in fitness (i.e. competitive domi-
nance; Chesson 2000). Relative niche differences are impor-
tant as they act as stabilising mechanisms (niche partitioning) 
whereas average fitness differences (inequalities) favour dom-
inance and, in the absence of stabilising niche differences, 
lead to competitive exclusion (Fig. 2; Chesson 2000, Adler 
et al. 2007, Valladares et al. 2015). To make it more compli-
cated, coexistence may also depend on the life cycle and the 
annual cycle of the interacting species. For example, stabilis-
ing mechanisms in plants have been shown to be strongest 

(a)

(b)

Figure 1. Schematic representation of biotic factors restricting or 
expanding the realised niche relative to the fundamental niche. 
Adapted from Bruno et al. (2003).
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in early life stages (Chu and Adler 2015). In birds, it has 
been shown that competitive dominance and, thus, fitness 
differences may differ between seasons; for example, great 
tits are the dominant competitors for roost and nest sites 
whereas coexisting blue tits are the dominant competitors 
for insect larvae in the early breeding season (Fig. 4; Dhondt 
2012). Such ontogenetic and seasonal shifts in coexistence 
mechanisms make it difficult to identify the true competitive 
mechanisms with current modelling approaches (Wittwer 
et al. 2015). Understanding the complex interplay between 
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Figure 4. Simplified flow chart for hybrid model of Swiss black 
grouse population as described in Zurell et al. (2012). Species 
occurrence records and environmental data are used to parameter-
ise the SDM. Then, the SDM is used to predict habitat suitability 
under current and future climate, which serves as input to the indi-
vidual-based black grouse model (IBM). Initially, birds of random 
age are distributed in suitable cells. In each simulation year, female 
black grouse may breed and produce n juveniles that will disperse 
to new areas before the next breeding period. Dispersal distance is 
drawn from a negative exponential dispersal kernel, but individual 
birds can make adaptive settlement decisions to avoid unsuitable 
and overcrowded habitats and they also avoid traversing widely 
unsuitable area. All birds are subject to mortality. If population size 
exceeds local carrying capacity, which increases linearly with SDM 
derived habitat suitability above a minimum threshold, then 
individuals will disperse to less crowded habitats in the nearest 
neighbourhood or mortality is increased. Illustration adapted from 
Zurell (2011).

Figure 2. Schematic representation of the ecological filtering cascade and its relation to coexistence theory (HilleRisLambers et al. 2012). 
Species from the regional species have to pass different filters to establish within local communities. The dispersal filter selects species from 
the regional species pool that are able to colonise local sites depending on their dispersal ability and chance events. The abiotic niche filter 
and the biotic niche filter select those species that are able to maintain positive population growth under the given environmental condi-
tions according to their physiology and resource requirements, and under given inter- and intraspecific interactions. Coexistence theory 
provides a framework for predicting the outcome of these niche filters (Chesson 2000). Species may differ in their abiotic niche requirements 
and in their competitive ability (ecological fitness). Large fitness differences between species will lead to competitive exclusion of the inferior 
competitor. These fitness differences can be overcome by niche differences and species can stably coexist whenever the niche differences are 
larger than the average fitness differences. Overall, relative niche and fitness differences will determine the presence and abundance of 
species in realised local communities.

Figure 3. Proposed coexistence mechanism between great tits and 
blue tits. Coexistence could be maintained by seasonally shifting 
competitive dominance (fitness) with great tit being the dominant 
competitor for roost sites and nest sites, and blue tit being the dom-
inant competitor for insect larvae during breeding period (Dhondt 
2012, Wittwer et al. 2015). Illustrations by D. Zurell.
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phenological changes in the timing of breeding and migra-
tion or changes in phenotypic plasticity among others 
(Nussey et al. 2005, Jonzén et al. 2006, Charmantier et al. 
2008). Thus, although this review mainly focuses on how 
demographic, dispersal and community processes shape spe-
cies’ niches and their response to future environments, the 
integration of adaptive mechanisms is an important and on-
going research field and further model development is neces-
sary in this direction (Urban et al. 2016), which I will briefly 
discuss at the end of this review.

Demographic models (of single species)

Over recent years, several demographic frameworks have 
been developed (or revived) for predicting (single) species 
niche and range dynamics more mechanistically (Franklin 
2010, Pereira et al. 2010, Ehrlén and Morris 2015, Lurgi 
et al. 2015). Their main characteristic is that they do not 
only describe the abiotic constraints on the niche but also 
explicitly consider the fundamental demographic processes 
of birth, death and dispersal (or a subset of these processes). 
Several of these models still rely on SDMs and use SDM-
derived habitat suitability to describe the niche and to con-
strain demography. Often, these kinds of models are referred 
to as hybrid SDMs (Thuiller et al. 2008). In the simplest 
case, habitat suitability maps predicted by SDMs are cou-
pled with simple dispersal models that simulate colonisation 
of suitable area (Engler and Guisan 2009, Franklin 2010), 
and thus allow the identification of potential dispersal limi-
tations under future climate change (Midgley et al. 2006, 
Normand et al. 2013).

More complex approaches supplement SDMs with popu-
lation dynamic models that allow the estimation of popu-
lation viability by explicitly modelling population growth. 
These hybrids are actually a rather diverse group that may dif-
fer widely in 1) the type of population dynamic model used, 
and 2) how exactly SDM derived habitat suitability and the 
population dynamic model are coupled. 1) The population 
dynamic model can be formulated as a classic meta-popula-
tion model with colonisation and extinction of patches, as 
a demographic model based on logistic growth, on a matrix 
population model or on an individual-based model among 
others (Lurgi et al. 2015). 2) We can distinguish at least 
three different coupling types. Binary output from SDMs 
can be used to distinguish suitable from unsuitable areas 
and use these patch-matrix maps as underlying landscape 
for the population model (Akçakaya 2000, Wiegand et al. 
2004, Cabral and Schurr 2010). In this case, demographic 
processes are simulated independent of the SDM but popu-
lations are restricted to those areas that the SDM predicted 
to be suitable. Alternatively, SDM derived habitat suitability 
can be used to scale the carrying capacity in the population 
model (Keith et al. 2008, Brotons et al. 2012, Zurell et al. 
2012; also see Fig. 4) or to scale vital rates in the popula-
tion models, for example survival (Dullinger et al. 2012) or 
recruitment (Albert et al. 2008).

A main conceptual problem of these hybrid models 
is that there is little theoretical and empirical support for 
the relationship between SDM derived habitat suitability 
and carrying capacity or vital rates (Thuiller et al. 2014, 
Ehrlén and Morris 2015). The shape of this relationship has 

these processes and how they scale up to affect communi-
ties, however, is important because climate change will likely 
have non-trivial and possibly unprecedented effects on spe-
cies range and community dynamics (Williams and Jackson 
2007, Blois et al. 2013).

Current state of demographic and community 
models

The theoretical excursion above pinpoints many different 
factors and processes that potentially govern the presence of 
a species in a specific location. Many of these factors are not 
accounted for in traditional SDMs. This leads to two main 
problems in global change research. First, climate impact 
predictions by SDMs may be fallacious, for example because 
they do not consider any transient, time-delayed species 
responses (Zurell et al. 2009, 2016a). Hence, many authors 
urged to supplement (mainly single-species) SDMs with 
more mechanistic approaches (Araújo and Guisan 2006, 
Thuiller et al. 2008). However, as I will discuss below, not all 
of the suggested modelling approaches are able to overcome 
fundamental limitations of SDMs, for example the equilib-
rium assumption. This leads to the second great challenge 
that SDMs are not able to properly disentangle the realised 
from the fundamental niche (Araújo and Guisan 2006, Elith 
and Leathwick 2009, Schurr et al. 2012) because they do not 
explicitly consider any of the demographic and community 
processes presented in Fig. 1. For example, SDMs may esti-
mate a smaller ecological niche than the species is actually 
able to occupy if the range or the niche of the species were 
not completely filled. This could happen because of dispersal 
limitation since the last glacial maximum (Sandel et al. 2011) 
or during invasion (Strubbe et al. 2013), or because the spe-
cies is excluded from parts of its range due to interspecific 
competition (Laube et al. 2013) among others. Such bias in 
the fitted species–environment relationship would hamper 
both our understanding of what limits a species range and 
our ability to predict to novel environments.

Many different models exist that move beyond the static 
and single-species view of SDMs ranging from phenom-
enological to mechanistic approaches (Pereira et al. 2010,  
Dormann et al. 2012, Ehrlén and Morris 2015). In the fol-
lowing, I concentrate on models that focus on the niche con-
cept, and can, in principle, be parameterised and calibrated 
from (broadly) field-measured data and do not require 
experimental knowledge (e.g. on physiology, Kearney and 
Porter 2004, Buckley 2008). After all, a main advantage of 
SDMs over most other approaches is that they can be readily 
applied to large numbers of species for which only limited 
data are available, and can thus provide a quick and purpose-
ful screening of potential climate change impacts on biodi-
versity. Hence, on the one hand, we need models that are 
able to overcome fundamental limitations of SDMs, and on 
the other hand, we need models that are still comparably 
easy to apply to many different species.

It is important to note that the models discussed herein 
all make the fundamental assumption of niche conservatism 
and currently ignore any genetic and behavioural adapta-
tions that could take place in response to climate and land 
use change. However, such adaptations have been observed 
to happen rapidly and in ecological time scale, for example 
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been made to incorporate different life stages (Sutherland 
et al. 2014), and they have been successfully applied in cli-
mate impact analyses (Jones et al. 2016). In the future, their 
ability to adequately predict temporal dynamics following 
climate change should be compared to other range dynamic 
approaches (Zurell et al. 2016a).

Multi-species models

Results from our model comparison using simulated data 
(Zurell et al. 2016a) also showed that future predictions 
by single species models were especially poor under com-
plex community dynamics. The importance of interspecific 
interactions is now widely acknowledged (Blois et al. 2013), 
and scientists have begun to develop ideas and model frame-
works to account for these (Kissling et al. 2012, Wisz et al. 
2013), aided by recent computational advances. Current 
multi-species frameworks can be distinguished into mul-
tivariate regression approaches based on static distribution 
data, the so-called joint species distribution models (JSDMs; 
Clark et al. 2014, Pollock et al. 2014, Warton et al. 2015, 
Ovaskainen et al. 2016b), and multivariate population mod-
els based on temporal abundance dynamics (Mutshinda 
et al. 2011, Wittwer et al. 2015).

Both model types aim at explaining the dependence 
between species, the joint probability of occurrence that is 
not accounted for by environmental variables alone (Clark 
et al. 2014). If the ranges of two species A and B overlap 
because they share similar environmental requirements, then 
the main question is whether they will occur independently 
of each other at a site or show some form of positive or 
negative association that is not explained by environment, 
meaning their probability of occurrence is higher or lower 
conditional on the presence of the other species (Fig. 5a). 
If both species are independent, then they could or could 
not co-occur simply by chance (Fig. 5b). If the species are 
not independent, then information of species B is neces-
sary to predict the occurrence probability of species A. In 
the extremes, species A would only occur when B is present 
(Fig. 5c) or species A and B would always exclude each other 
(Fig. 5d).

To date, a few different JSDM algorithms have been 
implemented that differ in how the joint distribution is 
estimated (Warton et al. 2015). Unstructured covariance 
models estimate the occurrence probability of multiple spe-
cies simultaneously and decompose species co-occurrence 
patterns into shared environmental response and resid-
ual patterns of co-occurrence (Ovaskainen et al. 2010,  
Pollock et al. 2014, Royan et al. 2016). As output, we obtain 
a covariance matrix of pairwise interactions. Latent variable 
models represent a computationally more efficient method 
based on unobserved (latent) variables that induce correla-
tion between species (Letten et al. 2015, Warton et al. 2015, 
Ovaskainen et al. 2016a). These models do not estimate all 
pairwise residual correlations, but shrink the parameter space 
to a minimum number of latent variables that best describe 
the residual covariance between the species.

Unfortunately, although constituting a major advance in 
biodiversity modelling, it is not clear yet in how far JSDMs 
could fulfil our wish to model interspecific interactions. Spe-
cifically, the residual co-occurrence (joint distribution) may 

been assumed to be linear (Keith et al. 2008), linear above 
a presence–absence threshold (Zurell et al. 2012) or sig-
moidal (Dullinger et al. 2012). The choice is not trivial as 
these relationships can result in largely different predictions 
(Zurell et al. 2016a). Furthermore, hybrids still make the 
fundamental assumption that the species is at equilibrium 
with its environment. If this assumption is not met, then 
separately fitting the SDM and the population model may 
actually lead to circularity problems. If, for example, a spe-
cies is dispersal limited, then the SDM is implicitly account-
ing for this dispersal limitation in the niche estimate and 
the population model will account for it again, such that 
dispersal is actually accounted for twice (Gallien et al. 2010). 
Thus, simply coupling SDM output to population models 
does not allow disentangling the effects of demography and 
dispersal on the realised niche (Schurr et al. 2012). To over-
come this limitation, Pagel and Schurr (2012) introduced 
a hierarchical Bayesian framework called dynamic range 
models (DRMs) that simultaneously estimate the param-
eters of a demographic and a dispersal model as well as the 
environmental response of demographic rates. DRMs thus 
avoid using SDMs but directly relate the intrinsic popula-
tion growth rate of the population model to environmental 
variables and directly account for any dispersal effects, which 
allows disentangling abiotic and demographic components 
of the realised niche and should thus be advantageous over 
SDMs (Pagel and Schurr 2012, Schurr et al. 2012).

Using simulated data (‘virtual ecologist approach’, Zurell 
et al. 2010), we tested prediction accuracy of different SDM 
hybrids and DRMs under climate change and under different 
demographic and community processes (Zurell et al. 2016a). 
Surprisingly, although we found DRMs produced a better fit 
to current data, they often showed poorer predictions than 
some of the SDM hybrids under climate change scenarios. 
This was mainly attributable to available prior knowledge on 
process rates (e.g. dispersal) and the structural realism of the 
population dynamic model (i.e. correctly specified mecha-
nisms and processes, Singer et al. 2016). Specifically, DRMs 
used the simple Ricker model (discrete version of logistic 
growth model) to represent population dynamics, ignoring 
any life-stage dependent responses to the environment, for 
example that fecundity depended on environment but sur-
vival did not. Thus, although DRMs are well grounded in 
ecological theory (cf. Fig. 1) and provide a major advance 
for disentangling different niche components (Schurr et al. 
2012), it will need further model development into a more 
generic framework that allows taking into account complex 
life cycles and different environmental response of single life 
stages in order to make more robust predictions under cli-
mate change (Zurell et al. 2016a).

In bird distribution modelling, several studies have used 
dynamic occupancy modelling to study recent range dynam-
ics (Kéry et al. 2013, Butcher et al. 2014, Yackulic et al. 
2015). Occupancy is described by colonisation and extinc-
tion processes (as in metapopulation models, Hanski 1998), 
which can be expressed as functions of environmental cova-
riates (Kéry et al. 2013). These models have similarities to 
DRMs in that they are estimated in a hierarchical framework, 
allow disentangling the different factors determining range 
dynamics, and account for imperfect detection through an 
observer model (Guillera-Arroita 2017). Also, attempts have 
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Barraclough 2016), and it has thus been proposed that non-
stationarity in interaction coefficients should be considered 
in future research (Kissling et al. 2012, Wisz et al. 2013, 
Warton et al. 2015) but hitherto only one worked example 
using multi-species occupancy modelling exists (Rota et al. 
2016).

A few examples on multivariate population models 
exist that use time series of multi-species co-occurrence 
or co-abundance to jointly estimate the relative impor-
tance of environmental stochasticity, environmental vari-
ables as well as intra- and interspecific interactions using 
Hierarchical Bayesian approaches (Mutshinda et al. 2009, 
2011, Wittwer et al. 2015). Although hitherto confined to 
single communities, which ignores any spatial (meta-com-
munity) dynamics, these multivariate population models 
provide a promising way forward as they allow disentan-
gling important components of coexistence theory, namely 
environmental dependence of demographic rates as well as 
intra- and interspecific density regulation.

Towards multi-species dynamic distribution models

What does all this imply for bird distribution modelling? 
Some examples exist that underline the merit of using 
dynamic distribution models for predicting avian species 
response to climate and land use change (Brotons et al. 2012, 
Zurell et al. 2012, Aben et al. 2016) and also for using multi-
species modelling approaches (Royan et al. 2016) as large 
scale patterns of bird assemblages seem to be, at least partly, 
affected by interspecific interactions (Zurell et al. 2016b). 
Nevertheless, both demographic models and multi-species 
models still have many limitations and uncertainties, and the 
necessary step forward would be to develop an integrated 
modelling framework that is able to take into account all of 
the demographic, dispersal and interspecific processes act-
ing on the niche (Fig. 1) (Urban et al. 2016). Operational-
izing such a framework for specific avian systems, however, 
will not be an easy task and will require adequate screen-
ing methods and standard protocols to define the necessary 
model complexity and data requirements. At the same time, 
the large amount of high-quality data that is available on 
birds, also make birds a unique study system for improving 
on current modelling approaches that will also aid biodiver-
sity modelling of other species groups. If we want to make 
robust predictions under global environmental change, it 
requires models that are structurally realistic and contain all 
(and only) relevant mechanisms that govern the dynamics in 
the specific system (Singer et al. 2016). Also, the additional 
effort of fitting complex mechanistic models needs to be well 
justified and targeted as both time and data requirements 
can be huge. If the system under study is highly stochastic 
and thus noisy, then simple SDMs may even outperform 
more complex models (Zurell et al. 2016a). In that sense, 
I see the different modelling frameworks discussed above as 
complimentary rather than opposing modelling strategies, 
each with its own strengths and weaknesses. Thereby, sim-
pler models (containing less process detail and requiring less 
data) can serve as important screening methods helping to 
test hypotheses about niche determinants and, thus, help-
ing to identify the necessary process detail (Fig. 6). At the 
same time, more complex models should only be favoured 

indicate interspecific interactions but may also be caused by 
missing or sub-scale environmental covariates (Clark et al. 
2014, Pollock et al. 2014, Harris 2015). Especially the latter 
is an important source of bias that is inherent in common 
species inventory data such as breeding bird atlases that are 
gridded to a certain resolution and may not necessarily reflect 
the spatial requirements of the many different species (Zurell 
et al. 2016b). It would be desirable to rigorously test under 
which circumstances JSDMs will reliably detect interspecific 
interactions, and how this is affected by complicating factors 
such as scale dependence. After all, interactions are spatially 
very localised processes between (small) numbers of individu-
als. For example, birds may compete locally for resources, for 
shelter and for nest sites (Dhondt 2012, Zurell et al. 2015). 
By contrast, the scale of data collection and analyses is often 
at plot or region scale, which may lead to information loss 
and distorted relationships (Clark et al. 2014). Additionally, 
it remains open, which interaction mechanisms could pos-
sibly be detected by JSDMs, at which scale, and which data 
types (co-occurrence or co-abundance) are required. A recent 
simulation study showed that co-occurrence patterns from 
predator–prey relationships could equal the co-occurrence 
patterns from either competitive or facilitative interactions 
(Araújo and Rozenfeld 2014). As the residual correlations 
estimated by JSDMs simply indicate whether co-occurrence 
is lower or higher than expected by chance given the environ-
ment, we can assume that current JSDM implementations 
will not allow unambiguous distinction of predator–prey (or 
consumer–resource) relationships and competitive or facili-
tative interactions, and will need further model develop-
ment in this respect. Another challenge is that interspecific 
interactions are not constant in space and time (Callaway 
et al. 2002, Meier et al. 2011, He et al. 2013, Lawrence and 

(a) (b)

(c) (d)

Figure 5. Schematic representation of joint probabilities of occur-
rence of two species A and B. (a) If species share parts of their envi-
ronmental niche and their ranges overlap in space, then the joint 
probability P(A and B) expresses the probability that the two species 
will co-occur at any one site. (b–d) Show the potential co-occurrence 
patterns of two species, each with a prevalence of 0.5, that are (b) 
independent, meaning they could or could not co-occur simply by 
chance, and the extreme cases of species that are (c) always  
co-occurring and (d) mutually exclusive. (b–d) Adapted from  
M. McCarthy.
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over time than sink populations, accurate life-cycle SDMs 
should be better at explaining population stability over time 
than conventional SDMs (Oliver et al. 2012).

Data requirements
Analogously to conventional SDMs, life-cycle SDMs 
require simple species occurrence data (e.g. presence-only, 
presence/absence, or abundance data). Above that, more 
detailed information on species’ ecology and life cycle are 
needed, which are often available through trait information 
in literature (e.g. foraging habitat, breeding habitat, nesting 
substrate; Zurell et al. 2016b). For evaluation of life-cycle 
SDMs, abundance time series for different places would 
be valuable, to assess whether population stability is better 
explained by these life-cycle SDMs than by simple SDMs.

Life-cycle DRM

Model development
Demographic models allow simulation of transient 
population dynamics to specific environmental stressors 
and estimation of population viability. As discussed earlier, 
DRM-like approaches provide a promising tool for dis-
entangling environmental and demographic components 
of the niche (Pagel and Schurr 2012, Schurr et al. 2012). 
However, applying them to birds will necessitate develop-
ing more generic DRM approaches that are able to take into 
account complex life cycles (Zurell et al. 2016a), for example 
by means of matrix population models. For efficient param-
eterisation (Hartig et al. 2011, 2012), it is important to 
gather as much prior information on relevant processes and 
potential parameter domains as possible. This will require 
definition of critical life stages (the knowledge of which is 
often available empirically) and their relevant niche axes (for 
example by screening through life-cycle SDMs), but also a 
more mechanistic understanding of dispersal. Furthermore, 
migratory birds, in particular long-distance migrants, are 
especially challenging for predicting population viability as 
their fitness is determined by factors experienced in both 
their breeding and wintering grounds, as well as en route 

over simpler models if their explanatory value is higher than 
that of simpler models or if the research question requires 
using more complex models. Here, I suggest five basic 
modelling steps for developing and operationalizing multi-
species dynamic distribution models for avian assemblages. 
The single steps each have high value for answering specific 
questions (Fig. 6). Before modelling, we should always con-
template whether more complex modelling approaches are 
necessary to answer the question at hand or to describe the 
particular study system, whether the data for such modelling 
are available and whether the efforts of data compilation and 
model estimation are well justified and balanced against the 
benefits.

Life-cycle SDM

Model development
Birds have complex life cycles that should be accounted 
for in both correlative and mechanistic models as different 
life stages may differ strongly in their niche requirements. 
For example, juvenile birds often require different food 
resources than adults (e.g. smaller, or more protein-rich; 
Newton 1998). Also, birds may have different spatial and 
habitat requirements depending on life stage, for example 
for breeding, foraging, finding shelter or overwintering. 
Many birds are at least partially migratory and thus experi-
ence environmental conditions in different geographic areas 
with potentially important implications for survival and 
overall fitness (Hewson et al. 2016). I suggest developing 
standard workflows for identifying key life stages of birds 
in the models, for example using traits, and for identifying 
the relevant niche axes and scales. Simple life-stage specific 
SDMs (Taboada et al. 2013) can be overlaid to distinguish, 
for example, source habitats, which contribute both to sur-
vival and reproduction, from sink habitats, which do not 
support reproduction but may nevertheless allow survival or 
are even important refuges during winter or other stressful 
times (Naves et al. 2003), or to distinguish habitats that pro-
mote dispersal (Rotllan-Puig and Traveset 2016). Following 
the hypothesis that source populations should be more stable 

Figure 6. Proposed modelling cycle to move beyond simple SDMs to multi-species dynamic distribution models for avian assemblages. 
Each modelling step can help answering specific research questions and identifying necessary model complexity for subsequent modelling 
steps. (SDM: species distribution model; JSDM: joint species distribution model; DRM: dynamic range model).
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depends on the spatial requirements of the species as well 
as on the length of the transects and radii around sample 
points. Additionally, trait data on trophic and habitat niche 
could help to remove implausible interaction links between 
species. Trait data describing, for example, spatial require-
ments such as home range size and territorial behaviour may 
help to account for the scale dependence of interspecific 
interactions.

Multi-species DRM

Model development
A critical step forward in biodiversity modelling would 
be the development of multi-species demographic mod-
els, which combine the ideas of DRMs (Pagel and Schurr 
2012) and of multivariate population models (Wittwer 
et al. 2015). Such multi-species DRMs will simultane-
ously estimate the environmental response of demographic 
rates and dispersal of multiple species as well as the inter-
action links and strengths between species, and will thus 
help disentangling the biotic components of the niche  
(Fig. 1). Within the model framework, interaction coef-
ficients could follow (discrete versions of ) the Lotka–
Volterra competition equations that allow the estimation 
of asymmetric interactions (Chesson 2000). These models 
will allow evaluating how environment and interspecific 
interactions limit population growth and spread of single 
species, and how these factors interact to form complex 
meta-community dynamics. Needless to say that such 
models would require rigorous testing to guide application. 
Also, they will benefit from any prior knowledge on poten-
tial species interactions to reduce computational efforts, 
and can thus gain from screening by simpler JSDMs.

Data requirements
Multi-species DRMs will require species co-occurrence (or 
co-abundance) data, and a number of co-abundance time 
series. The latter could be supplemented or possibly substi-
tuted by demographic data of a number of different places, 
but with the constraint that (at least some of ) the measured 
demographic rates of multiple species need to stem from the 
same place and time. Additionally, information on dispersal 
is advantageous (cf. life-cycle DRMs).

Multi-species life-cycle DRM

Model development
The last step for predictive multi-species demographic mod-
els would be the integration of life cycles into the multi-
species DRMs described above. Such a framework will not 
only allow assessing the sensitivity of different life stages to 
environmental stressors but will also allow evaluating how 
seasonal and ontogenetic shifts in interspecific interactions 
influence population and community dynamics in space 
and time. It could thus help elucidating such complex shifts 
in competitive dominance as illustrated by the blue tit and 
great tit example of Fig. 3. For operationalizing this frame-
work, all knowledge gained from the previous screening and 
modelling steps regarding the represented complexity of the 
species’ life cycle and the potential interspecific interactions 
will be highly valuable.

between the two. Ideally, full annual cycle models should be 
developed but will require a lot of additional knowledge to 
identify those factors that are limiting to population viability 
(Marra et al. 2015).

Data requirements
Life-cycle DRMs will require species occurrence data, but 
also data that carry information on species’ demography. This 
could be a number of abundance time series that mirror the 
outcome of demographic processes or could be demographic 
rates measured at different places (Zurell et al. 2016a). 
Additionally, information on dispersal will be advantageous 
to limit the plausible parameter range. Such prior informa-
tion can be obtained, for example, by analyses of ring data 
(Paradis et al. 1998) or telemetry data (Weston et al. 2013). 
Using efficient numerical optimisers, all these different data 
sources can be combined within a single parameterisation 
process, for example – but not exclusively – using Bayesian 
methods (Hartig et al. 2011, 2012).

Multi-species JSDM

Model development
JSDMs have the potential of becoming important screen-
ing tools helping to elucidate patterns of potential inter-
specific interactions in community assemblages. However, 
for this we need to better understand how JSDMs’ ability 
to identify and quantify different interaction mechanisms 
from co-occurrence and co-abundance data is affected by 
species’ characteristics and species’ prevalence, by species 
detection probability, and by scale among others. For exam-
ple, interspecific interactions are believed to become less 
important at large spatial scales (Eltonian noise hypothesis) 
but this scale dependence may differ largely between species 
(McGill 2010). Also, at increasing spatial scale the residual 
correlation between species in the models may become 
increasingly distorted and less informative of interspecific 
interactions because of shared environmental response or 
niche partitioning at the sub-scale (Clark et al. 2014). Fur-
thermore, for large numbers of species, interpretability of 
JSDMs may be hampered, and we thus need to develop 
adequate methods for dimension reduction (Kissling et al. 
2012). Whereas the latent variable models (Warton et al. 
2015) provide a computational form of dimension reduc-
tion, I see great potential for developing more trait-based 
approaches, as traits carry information on important niche 
and fitness differences that drive interspecific interactions 
(HilleRisLambers et al. 2012), and may also help to remove 
implausible (trophic) interactions (Morales-Castilla et al. 
2015).

Data requirements
It has not been tested yet under which circumstances these 
models will perform more accurately with species co-
abundance data compared to co-occurrence data but we may 
hypothesise that co-abundance data carry more information 
and could thus ease inference. For either data, one should 
pay attention to scaling issues inherent in the sampling. For 
example, bird atlas data obtained from point counts may 
ensure greater spatial overlap between the different spe-
cies than data from transect counts although this certainly 



1513

herein will likely be inappropriate unless adaptive mecha-
nisms are accounted for explicitly or the sensitivity of pre-
dictions against different assumptions of niche evolution is 
tested. Approaches exist for predicting behaviour bottom up, 
for example for predicting optimal life histories of migra-
tory birds (McNamara et al. 1998) that could potentially be 
integrated with such multi-species demographic models. For 
successful integration, however, still more empirical knowl-
edge is needed to understand how complex behaviours such 
as timing of migration and reproduction evolve in birds and, 
thus, how fast they may adapt under global environmental 
change as these factors may ultimately limit the predictive 
capacity of distribution models.
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