
ART I C L E

Me t h o d s , T o o l s , a n d T e c h n o l o g i e s

The clustering of spatially associated species unravels
patterns in tropical tree species distributions

Sean E. H. Pang1 | J. W. Ferry Slik2 | Damaris Zurell3 |

Edward L. Webb1,4,5

1Department of Biological Sciences,
National University of Singapore,
Singapore, Singapore
2Environmental and Life Sciences,
Faculty of Science, Universiti Brunei
Darussalam, Gadong, Brunei Darussalam
3Institute for Biochemistry and Biology,
University of Potsdam, Potsdam,
Germany
4Viikki Tropical Resources Institute,
Department of Forest Sciences, University
of Helsinki, Helsinki, Finland
5Helsinki Institute of Sustainability
Science (HELSUS), University of Helsinki,
Helsinki, Finland

Correspondence
Sean E. H. Pang
Email: s.pang@u.nus.edu

Handling Editor: Charles D. Canham

Abstract

Complex distribution data can be summarized by grouping species with similar or

overlapping distributions to unravel spatial patterns and separate trends (e.g., of

habitat loss) among spatially unique groups. However, such classifications are often

heuristic, lacking the transparency, objectivity, and data-driven rigor of quantitative

methods, which limits their interpretability and utility. Here, we develop and illus-

trate the clustering of spatially associated species, a methodological framework

aimed at statistically classifying species using explicit measures of interspecific spa-

tial association. We investigate several association indices and clustering algorithms

and show how these methodological choices drive substantial variations in cluster-

ing outcomes and performance. To facilitate robust decision-making, we provide

guidance on choosing methods appropriate to one’s study objective(s). As a case

study, we apply our framework to modeled tree distributions in Borneo and subse-

quently evaluate the impact of land-cover change on separate species groupings.

Based on the modeled distribution of 390 tree species prior to anthropogenic

land-cover changes, we identified 11 distinct clusters that unraveled ecologically

meaningful patterns in Bornean tree distributions. These clusters then enabled us

to quantify trends of habitat loss tied to each of those specific clusters, allowing us

to discern particularly vulnerable species clusters and their distributions. This study

demonstrates the advantages of adopting quantitatively derived clusters of spatially

associated species and elucidates the potential of resultant clusters as a spatially

explicit framework for investigating distribution-related questions in ecology, bioge-

ography, and conservation. By adopting our methodological framework and pub-

licly available codes, practitioners can leverage the ever-growing abundance of

distribution data to better understand complex spatial patterns among species dis-

tributions and the disparate effects of global changes on biodiversity.
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INTRODUCTION

With recent advancements in species distribution
modeling (SDM) and the greater availability of biodiversity
and environmental data, detailed predictions on species
distributions are becoming increasingly accessible (Elith &
Leathwick, 2009; GBIF, 2022; Norberg et al., 2019; Wüest
et al., 2020). This new wealth of high-resolution data
opens avenues for spatial analyses involving large species
pools, which can serve to provide greater insights into
community ecology and conservation science (Hannah
et al., 2020; Pang et al., 2021; Santini et al., 2021; Wüest
et al., 2020). However, as the number of species increases,
so does the inherent complexity of the biogeographical
data. Without a way to decompose species distributions,
large stacks of distribution data may instead encumber
analyses and obscure patterns or trends in the results
(Kreft & Jetz, 2010; Marquet et al., 2004; Villalobos et al.,
2013). To better summarize and interpret complex spatial
datasets, there is a need for robust methods for classifying
species based on their distribution (Jongman et al., 1995;
Legendre & Legendre, 2012).

Species with highly similar or overlapping distributions
indicate shared environmental requirements, biotic require-
ments, or dispersal barriers, or direct interactions between
species (e.g., mutualism or predation) (Keddy, 1992;
Peterson, 2011). Conversely, dissimilar distributions indicate
differences in those processes instead (e.g., cold vs. warm
temperature requirements or competitive exclusion).
Classifying species based on their distribution, therefore,
reflects a combination of processes—like the hierarchical
filters of community assembly theory—that have led to
recurrent patterns of associations or disassociations across
geographic space (Calatayud et al., 2020; Keddy, 1992;
Shipley & Keddy, 1987). Investigating these patterns and
processes is key to understanding biodiversity patterns and
species coexistence (Clements, 1936; HilleRisLambers et al.,
2012; Roxburgh & Chesson, 1998; Shipley & Keddy, 1987).
In other words, by decomposing species into relatively
homogeneous subsets, with shared geographic distributions,
we can make apparent the spatial structure of species com-
munities and their driving processes.

Classifying species with similar distributions is the
“sister analysis” of classifying sites with similar composi-
tions, that is, the R-mode versus Q-mode analysis, respec-
tively (Legendre & Legendre, 2012). Although classifying
sites is the more prevalent method in biogeography and
spatial ecology (Kreft & Jetz, 2010), classifying species offers
an alternative view of spatial patterns. Site classifications
are useful when the focus is on understanding composi-
tional relationships among sites, for example, how differ-
ences in species composition among areas might reflect
historical biogeography and evolution or events of

vicariance and geodispersal (Hazzi et al., 2018; Holt et al.,
2013; Kreft & Jetz, 2010; Leroy et al., 2019). Conversely,
species classifications are useful when the focus is on
understanding spatial relationships among species. For
instance, consider the impact of deforestation and climate
change on species distributions. As spatially heterogeneous
threats, their impact varies substantially depending on the
species’ initial distribution (Bellard et al., 2014; Newbold,
2018; Pang et al., 2021; Trisos et al., 2020). Such variations
are difficult to separate and investigate in across-species
summaries that only reveal the most prevailing trend,
whereas species-specific interpretations are impractical for
studies involving hundreds or thousands of species
(Marshall et al., 2018; Torres et al., 2014; Velazco et al.,
2019). However, by grouping species and conducting
group-specific summaries instead, we might uncover differ-
ing trends of loss and gain linked to each group’s unique
distributional pattern and better understand their vulnera-
bility to a given threat (e.g., lowland vs. montane vulnera-
bility to deforestation) (Manchego et al., 2017; Pang et al.,
2021; Yanahan & Moore, 2019). The classification of species
with similar distributions, therefore, functions as concise
summaries of species distribution data, which can provide
a spatially explicit framework for investigating
distribution-related questions in ecology, biogeography, and
conservation.

Despite the potential usefulness of grouping spatially
associated species, few studies have adopted replicable
quantitative methods for doing so. Instead, studies
often adopt a heuristic approach toward grouping
species, using classifiers based on a putative understand-
ing or description of species associations (Baatar, 2019;
Manchego et al., 2017; Pompe et al., 2010; Yanahan &
Moore, 2019). Such qualitative approaches lack the trans-
parency, objectivity, and data-driven rigor of more quan-
titative methods, which limits their interpretability and
utility (Jongman et al., 1995; Kahneman & Tversky, 1972;
Legendre & Legendre, 2012; Marquet et al., 2004). In this
regard, multivariate methods—based on explicit mea-
sures of interspecific spatial association—hold immense
potential as a quantitative approach for unraveling pat-
terns in species distributions and delineating species
groupings (Jongman et al., 1995; Keil et al., 2021;
Legendre & Legendre, 2012; Roxburgh & Chesson, 1998).

Multivariate methods can reduce the inherent complex-
ity of biogeographical data, and their strength lies in their
ability to generate statistically derived species groupings,
with within- and between-cluster variances that are quanti-
fiable and testable. The reproducibility of such groupings,
and therefore transparency, is especially relevant given the
prevalent use of SDMs for evaluating species vulnerabilities
and informing management decisions (Feng et al., 2019;
Guisan et al., 2013; Titeux et al., 2017; Zurell et al., 2020).
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The challenge with clustering spatially associated species,
however, is that there is no definitive measure of spatial
association; multiple interpretations and indices exist
(Cramér, 1924; Hub�alek, 1982; Keil et al., 2021;
Roxburgh & Chesson, 1998). Likewise, there are multiple
strategies and techniques for unsupervised clustering but
no single universal approach (Erman et al., 2015; Guerra
et al., 2012; Jongman et al., 1995; Legendre & Legendre,
2012; Seif, 2018). Furthermore, such a technique has
not been applied to detailed distribution data before
(i.e., modeled distributions) and a methodological frame-
work for doing so yet exists. Thus, practitioners face a suite
of methodological options that can lead to highly varied
clustering outcomes but lack clear guidance on how to
choose between outcomes or what the implications are. If
clustering of spatially associated species is to be taken up
more broadly, there is a need to understand how users’
methodological choices affect variations in clustering
results and their subsequent ecological interpretations.

In this study, we develop and illustrate a methodolog-
ical framework for the clustering of spatially associated
species (CSAS), which aims at helping practitioners navi-
gate the steps involved with forming and applying species
clusters to leverage the abundance of distribution data.
To further guide user decision-making, we test several
association indices and clustering algorithms and investi-
gate resulting variations in clustering outcomes. As a case
study, we apply the framework to the modeled distribu-
tion of 390 tree species in Borneo. We then demonstrate
the use of the resulting clusters to separate trends of habi-
tat loss due to land-cover change and further discuss
other applications of spatially associated species clusters.

METHODS

Framework

We developed our framework based on those suggested by
Kreft and Jetz (2010) and Dufrêne and Legendre (1997) for
classifying sites—the “sister analysis” of classifying species.
We also incorporated key considerations noted by Legendre
and Legendre (2012) and Keil et al. (2021) for quantifying
interspecific spatial associations and clustering species
based on those associations. Our methodological framework
for the CSAS involves six main steps (Figure 1).

1. Define the objective and purpose of the study: This
sets the context and premise of the entire analysis and
influences how subsequent steps are taken.

2. Obtain distribution data: The data type determines the
spatial scale and extent at which associations are quan-
tified (e.g., 50-m2 plot data vs. 10-km2 raster maps) and

what further spatial analyses are possible (e.g., raster
maps allow visualizations of each cluster’s distributional
pattern), whereas the species list determines what pat-
terns of associations can be found (e.g., montane pat-
terns if only montane species are included).

3. Select an association index: A relevant index is selected
to quantify interspecific spatial associations and produce
a pairwise dissimilarity matrix as required for clustering.

4. Clustering analysis: A chosen clustering algorithm is
applied to the dissimilarity matrix to cluster species. A
stopping rule can be implemented to determine the
optimal number of clusters, which often uses informa-
tion on within- and between-cluster variances.

5. Evaluate clusters: Clustering results can be evaluated
quantitatively using a variety of metrics, each measur-
ing a different aspect of clustering performance.
Clusters and their underlying dissimilarity matrix can
also be visualized using ordination techniques for
more qualitative comparisons of data structure and
cluster performance.

6. Further geographical, ecological, and conservation ana-
lyses: Clusters of spatially associated species can be
directly analyzed (e.g., highlighting distinct patterns of
spatial distributions) or used as a spatially explicit frame-
work for further analyses (e.g., disentangling trends of
habitat loss).

In the following, we elaborate on each of these steps
and describe how we implemented them within the con-
text of our case study. In steps (3) and (4), we also
included analyses for investigating variations due to the
choice of association index and clustering algorithm.

1. Define the objective and purpose of the study

The objective of the study directly shapes how each subse-
quent step is taken. In selecting clustering strategies, for
instance, one may choose between hierarchical or
nonhierarchical clustering algorithms. If the only require-
ment of the clustering analysis is to form a given number
of clusters for comparison with existing classifications
(e.g., morphological adaptations; Boyce & Wong, 2019), dis-
crete nonhierarchical clustering algorithms like k-means
may be a good choice. On the other hand, if the focus is on
investigating patterns of interspecific spatial associations
and their relatedness to other interspecific relationships
(e.g., phylogenetic or functional dissimilarity; Rüger et al.,
2020; Villalobos et al., 2017), a hierarchical clustering algo-
rithm is likely more appropriate. In our case study of
Bornean tree species, we are interested in uncovering spa-
tial relationships and identifying discrete clusters of simi-
larly distributed species for further spatial analyses
(i.e., habitat loss). Therefore, we focus on clustering

ECOSPHERE 3 of 28

 21508925, 2023, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4589 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



algorithms that produce discrete hierarchical groupings of
species (Kaufman & Rousseeuw, 2005).

2. Obtain distribution data

Species distribution data are the primary data required.
The scale and extent of species distribution data, and the
target species involved, all determine what can be inferred
from the spatial analyses (Allen & Hoekstra, 1990;

Hurlbert & Jetz, 2007; Kreft & Jetz, 2010; Owen-Smith
et al., 2015). However, more fundamentally, the type of
distribution data itself affects how we interpret resultant
clusters. There are three general types of distribution data:
sampled, extent-of-occurrence, and modeled.

I. Sampled presence or abundance community data
(e.g., plot data) give empirical information on species
distributions. Their advantage is that they indicate

Distribu�on maps

[1] Define study objec�ve

[2] Obtain distribu�on data

[3] Select ISA index

[4] Clustering analysis

Clusters of spa�ally 
associated species

[6] Further geographical, ecological, 
and conserva�on analyses

Hierarchical

Ordina�on

Nonhierarchical

Species ranking
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Inves�gate variance among.. 

ISA indices

clustering algorithms

Resultant dendrograms

Euclidean 
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F I GURE 1 The methodological framework for the clustering of spatially associated species (CSAS) that consists of six main steps. The

analysis of variance at different steps are included in blue. The red lines indicate the alternate route of applying nonhierarchical clustering

algorithms, where the dissimilarity matrix is first ordinated. ISA, interspecific spatial association.
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directly observed patterns of associations across
varying spatial and temporal scales (Ledo, 2015;
Owen-Smith et al., 2015). However, sampled data are
often spatially biased and provide an incomplete rep-
resentation of species distributions and their associa-
tions (Boakes et al., 2010; Stolar & Nielsen, 2015).

II. Extent-of-occurrence maps describe the maximum
geographical extent of species and are typically
hand-drawn by experts using occurrence records, a
heuristic understanding of species’ habitat require-
ments, or both (Gaston, 1996; Lomolino et al., 2006).
Extent-of-occurrence maps thus represent scale-
dependent abstractions of species’ ranges (Gaston, 2003;
Hurlbert & Jetz, 2007). Although extent-of-occurrence
maps are highly qualitative and overestimate fine-scale
occurrences (Graham & Hijmans, 2006; Jetz et al.,
2008), they are useful for broadscale analyses where
such data problems are less consequential (e.g., Kreft &
Jetz, 2010; Trisos et al., 2020).

III. Modeled data typically represent statistical infer-
ences of species distributions derived from modeling
occurrence records against prevailing environmental
conditions (Peterson & Sober�on, 2012; Soberon &
Peterson, 2005) and are the data type of interest for
this study. Modeled data are advantageous in that
they can be used to examine, measure, and predict
changes in species distributions across space and
time and are frequently used to support biodiversity
assessments and conservation prioritizations (Guisan
et al., 2013; Guisan & Thuiller, 2005; Peterson, 2011).
One inevitable limitation of this method is that the
processes modeled to produce the data dictate what
can be inferred. For instance, SDMs based on climate
predictors alone cannot reflect variations in species
distributions due to varying soil requirements
(Corlett & Tomlinson, 2020) and cannot be used to
explicitly infer biotic interactions (i.e., modeled asso-
ciations only reflect shared environmental require-
ments) (Blanchet et al., 2020; Peterson et al., 2020);
however, this can potentially be addressed if data on
such interactions are incorporated (Ovaskainen
et al., 2017; Tikhonov et al., 2017).

Our case study is of a regional scale, encompassing the
island of Borneo, and aims to measure associations among
tree species’ natural distributions (i.e., distributions before
anthropogenic disturbances). These distributions will be
used to identify clusters of similarly distributed species and
evaluate habitat loss due to land-cover change for each clus-
ter. Modeled distributions were therefore the most appropri-
ate choice as they allow fine-scale, statistical, and
empirically based estimates of species distribution before
anthropogenic disturbances like deforestation.

As our study focuses primarily on the methods for
clustering spatially associated species, we present only a
summary of the SDM methods (for full details, see
Appendix S1: Sections S1–S4):

a. We obtained 19 bioclimatic (30 arcsec; Karger et al.,
2017), 5 soil-water (30 arcsec; Trabucco & Zomer, 2010,
2018), and 9 soil property (250 m2; Hengl et al., 2017)
variables, resampled to 30 arcsec (~1 km2) and reduced
using a principal components analysis (PCA) to their
first 10 principal component (PC) axes (87% cumulative
variance) via the “stats” and “raster” packages in
R (Hijmans & Etten, 2012; R Core Team, 2013)
(Appendix S1: Section S2 and Table S1). A land-cover
map (300 m2) from the year 1992 (earliest available)
was obtained from the European Space Agency (ESA),
reclassified as forested and nonforested following
Intergovernmental Panel on Climate Change (IPCC)
land categories and resampled to 30 arcsec (ESA, 2017)
(Appendix S1: Table S1). A binary land-cover categori-
zation was adopted to provide a conservative approach
to identify intact habitats; nonforested pixels were con-
sidered unsuitable. This was a reasonable assumption
given our focus on tree species and that deforestation by
definition entails clearing the land of all or most trees.

b. Occurrence data of vascular (Tracheophyta) species in
Borneo were obtained from the Global Biodiversity
Information Facility (GBIF, 2019) (Appendix S1: Section
S3). Spelling errors and synonyms were corrected using
the “Taxonstand” package in R (Cayuela et al., 2012;
R Core Team, 2013), and occurrences with low accuracy
or precision were removed (Gueta & Carmel, 2016)
(Appendix S1: Section S3). Tree species were identified
using the GlobalTreeSearch database (Beech et al.,
2017). To prevent mismatches between occurrences and
contemporary land-cover data and account for anthro-
pogenic niche truncations (Faurby & Araújo, 2018;
Milanesi et al., 2020; Pang et al., 2022), occurrences
within forested and nonforested areas were separated
following recommendations in Pang et al. (2022). While
occurrences within forested areas were used for model
training and cross-validation, occurrences within
nonforested areas were used exclusively to validate his-
torical distributions (i.e., projections onto a manually
calibrated zero anthropogenic disturbance land-cover
scenario). Occurrences were then thinned using a
10 km buffer (Aiello-Lammens et al., 2015), separately
for each split. Species with fewer than 10 or 5 occur-
rences within forested or nonforested areas, respectively,
were excluded.

c. All species were individually modeled and tuned using
the MaxEnt (3.4.1) algorithm via the “ENMeval”
(2.0.0) package in R (Kass et al., 2021; Phillips et al.,

ECOSPHERE 5 of 28

 21508925, 2023, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4589 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2006, 2017; R Core Team, 2013). To contrast occur-
rence data, 10,000 background points were sampled
from pixels of ≥10-km distance from species’ occur-
rence points, where sampling probability was derived
from a kernel density estimate representing the geo-
graphical sampling bias (Kramer-Schadt et al., 2013;
VanDerWal et al., 2009; Vollering et al., 2019). For
model tuning, 50 candidate models based on five
combinations of feature classes and 10 regularization
multipliers were considered (Boria et al., 2017;
Morales et al., 2017), each trained using occurrences
within forested areas and the 10 environmental PC
axes and reclassified land-cover map (year 1992) as
predictors (Appendix S1: Section S4 and Figure S1).
Candidate models were evaluated using a nested
checkerboard cross-validation technique for species
with >25 occurrences (else, 10-fold cross-validation)
and had their projections of historical distributions
validated using occurrences within nonforested areas
(testing for niche truncation; Pang et al., 2022). The
best performing candidate model was determined
using a combination of area under the curve (AUC),
true skill statistics (TSS), and omission rates
(OR) but accepted only if AUC > 0.7, TSS > 0.4, and
OR < 0.2 (for cross-validation and previously excluded
occurrences) (Appendix S1: Section S4). Model projec-
tions of historical distributions as continuous
estimates of habitat suitability (or probability of occur-
rence) were converted into binary range maps using

the maximizing the sum of sensitivity and specificity
threshold (Liu et al., 2016).

3. Select interspecific spatial association index

Clustering analyses require a distance/dissimilarity
matrix. Site clustering—the “sister analysis”—requires a
site-by-site matrix of beta diversity (compositional dissim-
ilarity between sites) (Kreft & Jetz, 2010), whereas species
clustering here requires a species-by-species matrix
containing interspecific measures of distributional dis-
similarity. To calculate the required dissimilarity matrix,
an appropriate association index must first be selected.
From a theoretical or conceptual standpoint, the choice
of association index is arguably the most influential step,
as the index used reflects the study’s mathematical and
ecological definition of association (Box 1), and by exten-
sion, the clusters they inform (Hub�alek, 1982; Keil et al.,
2021; Legendre & Legendre, 2012).

Keil et al. (2021) recently evaluated several association
indices and found substantial variation in their perfor-
mance and sensitivity, which provides vital information
for selecting well-performing indices. However, within the
context of clustering, we also need to consider how differ-
ent indices affect the clustering outcome and distributional
patterns identified. Moreover, it is unclear whether indices
perform differently when using modeled distributions;
Keil et al. (2021) used community matrices and simulated
positions of individuals in a bound space. Thus, we

BOX 1 Significance of the choice of association index: the double-zero problem.

A simple example of how association indices can differ, relevant specifically to binary indices, is in their treat-
ment of co-absences: this is known as the double-zero problem (Legendre & Legendre, 2012). It is often difficult
to sensibly define which sites of co-absence provide univocal or useful information for quantifying associations
(Legendre & Legendre, 2012). In extreme cases, the answer is clear, for example, co-absences across Europe are
not meaningful when measuring associations among Bornean species. But in many cases, the answer is less
obvious. Binary indices are based on four quantities: the number of sites uniquely occupied by species 1 (b) or
species 2 (c), and the number of sites occupied by both (a) or neither (d) species, where the total number of sites
is n = a + b + c + d. As an example of the double-zero problem, compare the Jaccard (1901) index of associa-
tion (a/(a + b + c)) against the Sokal and Michener (1958) matching coefficient ((a + d)/n). As co-absences (d)
and the number of sites (n) by extension become very large, the Jaccard index remains unchanged while
matching coefficients approach a value of one. On the other hand, without co-absences (d), an index essentially
ignores differences in species prevalence. Consider a map of 1000 pixels, two widespread species occupying
500 pixels each that co-occur in 250, and two range-restricted species occupying 50 pixels each that co-occur in
25. If we adopt the Jaccard index, associations between the two widespread and two range-restricted species are
identical (widespread: 250/(250 + 250 + 250) = 0.33; range-restricted: 25/(25 + 25 + 25) = 0.33). However, it is
generally considered “harder” for range-restricted than widespread species to co-occur, which the matching
coefficient reflects (widespread: (250 + 250)/1000 = 0.5; range-restricted: (25 + 925)/1000 = 0.95) (Legendre &
Legendre, 2012).
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selected and tested 12 indices from Keil et al. (2021)—six
binary and six continuous—each representing various
aspects of interspecific spatial association (Table 1).
Broadly, the selected binary indices can be divided into two
families: Jaccard index (jacc), Dice–Sorensen index (dice),
and Alroy coefficient (alroy), which exclude co-absences;
and matching coefficient (match), tetrachoric correlation
(tetra), and scaled C-score (scalec), which include
co-absences. Correspondingly, continuous indices also vary
in their mathematical properties and the dissimilarities they
measure: difference-based indices, Bray–Curtis (bray) and
Ruzicka (ruz), which essentially measure the cumulative
differences in occurrence probabilities across pixels;
distance-based indices, Hellinger (hell) and chi-squared
(chi), which normalize probabilities by their sum before cal-
culating differences; and correlation-based indices, Pearson
(pears) and Spearman (spear), which examine the scaled
covariances in probabilities (occurrence probabilities
because of our use of modeled distribution data). Clustering
analyses require non-negative distance or dissimilarity
values, and so we transformed indices violating this
requirement, for example, [(1 − pears)/2] (see Table 1).

These indices were applied to the modeled historical
distribution of our 390 tree species, which resulted in

12 dissimilarity matrices of dimension 390 × 390, each
corresponding to one index. While continuous indices
used continuous distribution maps, binary indices used
their binary equivalents. To examine variations in inter-
specific spatial association due to the choice of index, we
calculated the Pearson correlation of association values
among the 12 dissimilarity matrices. The correlation
matrix was then passed into a PCA and visualized using
a variable plot.

4. Clustering analysis

Cluster analysis falls under the family of
unsupervised learning methods in exploratory data analy-
sis, and its primary aim is to classify similar objects while
identifying boundaries between groups (Kaufman &
Rousseeuw, 2005); the object as sites in the case of clus-
tering sites—the “sister analysis”—but species in our case
of clustering spatially associated species. Before cluster-
ing, one needs to justify why discontinuities might exist
or explain a practical need to divide a continuous set of
objects into groups (Legendre & Legendre, 2012).
Justifying discontinuities among species distributions is
complex. The community-unit model by Clements (1936)

TAB L E 1 The binary and continuous indices of interspecific spatial associations tested for this study.

Binary indices Acronym Formula (as dissimilarity) Brief notes

Jaccard index jacc b+ c
a+ b+ c

Proportional overlap; excludes d

Dice–Sorensen index dice b+ c
2a+ b+ c

Proportional overlap; excludes d

Alroy coefficient alroy 3bc
2 a+ bð Þ a+ cð Þ+2a

ffiffi

z
p

+ bc
Variant of Forbes coefficient of association;

excludes d

Matching coefficient match b+ c
n

Proportional overlap; includes d through n

Pearson tetrachoric correlation tetra 1− ad− bc
a+ bð Þ c+ dð Þ a+ cð Þ b+ dð Þ½ �0:5 Correlational; includes d

Scaled C-score scalec bc
n n− 1ð Þ=2 Includes d through n

Continuous indices Acronym Formula (as dissimilarity) Brief notes

Bray–Curtis dissimilarity
(percentage difference)

bray
Pn

i¼1
xi − yij j

x + + y+

Proportional difference

Ruzicka dissimilarity ruz 2 Cbray

1+Cbray
Proportional difference

Hellinger distance hell
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

ffiffiffiffiffi

xi
x+

q

−
ffiffiffiffiffi

yi
y+

q

� �2
r

Distance metric; Euclidean distance after
Hellinger transformation

Chi-squared distance chi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x + + y+ð ÞPn
i¼1

1
xi + yi

xi
x +

−
yi
y+

� �2
r

Distance metric

Pearson correlation
(scaled covariance)

pears
1−

Pn

i¼1
xi − xð Þ yi − yð Þ

σxσy n− 1ð Þ

� �

.

2
Correlational; parametric

Spearman correlation (Rho) spear Pears between rank values of x and y
as dissimilarity

Correlational; nonparametric

Note: Binary indices are based on four quantities: the number of sites uniquely occupied by species 1 (b) or species 2 (c), and the number of sites occupied by
both (a) or neither (d) species, where the total number of sites is n = a + b + c + d and the total number of occupied sites is z = a + b + c. Continuous indices

are based on the vectors of continuous distribution data (occurrence probability or habitat suitability) of two species as represented by x and y, their means as x
and y, their sums as x + and y+ , and their standard deviations as σx and σy, where xi and yi are their values at site i and n equals the total number of sites.
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states that communities result from nonoverlapping
groups of species–response curves along an environmental
gradient, which supports discrete groupings of species dis-
tributions. In contrast, the continuum model of
Whittaker (1951, 1953) and Curtis (1959) contends that
communities vary gradually along complex environmental
gradients and that no distinct groupings exist. Other stud-
ies suggest that neither of these two views is correct, or
some amalgamation of them (Roberts, 1987; Shipley &
Keddy, 1987; Westman, 1985), or that it depends on the
scale (Allen & Hoekstra, 1990; Collins et al., 1993;
Hoekstra et al., 1991). However, there is evidence
supporting recurrent patterns of associations along envi-
ronmental gradients for Bornean flora (Raes et al., 2009;
Slik et al., 2003, 2009), which clustering analyses may
serve to uncover. More practically, clustering species distri-
butions provides a spatially explicit framework for investi-
gating distribution-related questions and applications in
ecology, biogeography, and conservation. For this study,
cluster-specific summaries of habitat loss would offer
greater insights into trends of biodiversity loss in Borneo.

(4a) Select clustering algorithm

Two main families of clustering algorithms exist:
nonhierarchical and hierarchical (Jain et al., 1999;
Kaufman & Rousseeuw, 2005). Nonhierarchical algorithms
partition the data into a predetermined number of clusters

(k). Algorithms from this family include k-means and
partitioning around medoids (Kaufman & Rousseeuw,
2005). However, nonhierarchical algorithms are limited
because they require the user to specify the number of clus-
ters and they do not yield relationships among clusters
(Legendre & Legendre, 2012). Thus, we do not consider
nonhierarchical algorithms further. By contrast, hierarchi-
cal algorithms construct a hierarchy of clusters, where a
predetermined number of clusters is not required and rela-
tionships among clusters are depicted through a dendro-
gram. Hierarchical relationships are especially relevant for
spatially associated ecological communities (Clements,
1936; Collins et al., 1993; Keddy, 1992).

Hierarchical algorithms fall into two main categories:
agglomerative and divisive (Jain et al., 1999; Kaufman &
Rousseeuw, 2005). Although divisive algorithms are typi-
cally more efficient and accurate, they are also more com-
plex and harder to interpret, whereas agglomerative
algorithms rely on simpler merging steps and are also
among the most popular (Erman et al., 2015; Rajalingam &
Ranjini, 2011; Roux, 2018; Singh & Singh, 2012). Thus, we
focus on seven easy-to-implement and frequently used
agglomerative clustering algorithms (Table 2): unweighted
pair-group method using arithmetic averages (UPGMA),
weighted pair-group method using arithmetic averages
(WPGMA), complete linkage (CL), single linkage (SL),
unweighted pair-group method using centroids (UPGMC),
weighted pair-group method using centroids (WPGMC),

TAB L E 2 The seven hierarchical agglomerative clustering algorithms tested for this study.

Clustering algorithm (common synonyms) Acronym Type
Brief description of distance

between clusters

Unweighted pair-group method using
arithmetic averages (average linkage)

UPGMA Proximity Distance between clusters equal the mean of all
distances between objects of each cluster

Weighted pair-group method using arithmetic
averages (McQuitty’s method)

WPGMA Proximity Distance between clusters equal the weighted
mean of all distances between objects of each
cluster, where the subclusters of the most
recently merged cluster have equal influence
on that distance

Complete linkage (furthest neighbor) CL Proximity Distance between clusters equal the maximum
distance between objects of each cluster

Single linkage (nearest neighbor) SL Proximity Distance between clusters equal the minimum
distance between objects of each cluster

Unweighted pair-group method using centroids
(centroid linkage)

UPGMC Geometric Distance between clusters equal the Euclidean
distance between their geometric centroids

Weighted pair-group method using centroids
(median linkage)

WPGMC Geometric Distance between clusters equal the Euclidean
distance between their weighted centroids,
where the subclusters of the most recently
merged cluster have equal influence on its
centroid

Ward’s method (minimum increase in
sum-of-squares)

WARD Geometric Distance between clusters equal the magnitude by
which the sum-of-squares in their joint cluster
is greater than their combined sum-of-squares

8 of 28 PANG ET AL.

 21508925, 2023, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4589 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and Ward’s method (WARD). Clustering algorithms were
applied to each dissimilarity matrix using the “linkage”
function from the mdendro package in R, generating
84 candidate clustering outcomes (12 dissimilarity indices
by seven clustering algorithms) and their dendrograms
(Fern�andez & G�omez, 2020; R Core Team, 2013).

To investigate variations among the 84 candidate den-
drograms, we measured variations in dendrogram structure
using Baker’s gamma. Baker’s gamma essentially compares
the relative position of nodes between dendrograms as the
Spearman correlation in lowest common branches, where
the lowest common branch is the highest possible number
of clusters for which two species belong to the same cluster
(i.e., merging node in relation to other nodes) (Baker,
1974). The correlation values between dendrograms were
then passed into a PCA and visualized using variable plots.
We also compared dendrograms using co-phenetic correla-
tion, common nodes, and Full-text index in Minute space
(FM-index) (Appendix S1: Figures S5–S12). However, we
focused on Baker’s gamma as it assessed the general struc-
ture of each dendrogram and is unaffected by the height of
each branch, because branch heights may be distorted for
dendrograms resulting from space-dilating clustering algo-
rithms like WARD (Fern�andez & G�omez, 2020).

(4b) Determine optimal number of clusters

Determining the optimal number of clusters is an
age-old challenge of clustering analysis (Chouikhi et al.,
2015; Milligan & Cooper, 1985). While taxonomists often
seek naturally formed clusters with small distances between
member objects and large distances between objects from
different clusters, ecologists seek to understand a world that
often exists along a continuum and must usually contend
with somewhat arbitrary clusters (Gauch & Whittaker,
1981; Legendre & Legendre, 2012). Clusters may be arbi-
trary when objects are evenly spread through dissimilarity
space. In such cases, groupings are partially imposed by the
clustering algorithm and are less intrinsic to the data, and a
range of optimal number of clusters may be more appropri-
ate than a single value (Gauch & Whittaker, 1981). This
does not imply, however, that a stopping rule or an internal
validation criterion for determining cluster boundaries is
unnecessary. On the contrary, a more rigorous selection
procedure is required to ensure transparency, objectivity,
and replicability in determining and justifying the (range
of) optimal number of clusters (Guerra et al., 2012;
Legendre & Legendre, 2012).

Quantitative inspections of diagnostic graphs (i.e., an
evaluation metric plotted against the number of clusters)
offer a rigorous and data-driven procedure to determine a
meaningful and useful number of clusters (Milligan &
Cooper, 1985; Salvador & Chan, 2004; e.g., Kreft & Jetz,

2010). We assessed the diagnostic graph of three evaluation
metrics: merging height, within-cluster variance, and
between-cluster variance. Plotting these metrics against the
number of clusters produced a scree-like evaluation plot
(Appendix S1: Figure S2). The L-method of Salvador and
Chan (2004) was used to quantitatively identify the knee or
elbow in these evaluation plots, that is, the maximum cur-
vature of the graph (for details, see Salvador & Chan,
2004). Although other advanced stopping rules certainly
exist, many of them are difficult to implement for ecologi-
cal data where clusters are largely arbitrary and filled with
outliers and noise (Chouikhi et al., 2015; Guerra et al.,
2012; Legendre & Legendre, 2012; Milligan & Cooper,
1985). The Cali�nski and Harabasz (1974) index, Duda and
Hart (1973) ratio criteria, Hubert and Levin (1976) C-index,
and Rousseeuw (1987) silhouettes identified optimal num-
ber of clusters that were less meaningful and useful (see
Appendix S1: Table S3). Hence, to complement inspections
of diagnostic graphs, we developed and employed a bifurca-
tion paired t-test stopping rule. Moving down the dendro-
gram, we tested for a significant decrease in within-cluster
variance using a paired t-test at each passing bifurcation
(i.e., cluster partitioning). The bifurcation for which no sig-
nificant decrease was observed determined the stopping
point for partitioning the data and therefore the optimal
number of clusters (for details, see Appendix S1: Figure S3).
For stopping rules involving within- and between-cluster
variance, the centers used to calculate variances were either
the aggregated (centroid; mean for continuous data and
mode for binary data) or indicator species distribution of
each cluster (medoid; the object with the lowest sum of
within-cluster dissimilarities).

5. Evaluate resultant clusters

We propose a set of quantitative and qualitative eval-
uations for assessing clustering performance. First, we
quantitatively assessed the dendrogram of each candidate
clustering outcome using the following three dendrogram
performance metrics:

1. Co-phenetic correlation measures the faithfulness of the
co-phenetic distances (dendrogram branch heights) to
the original dissimilarity matrix (Sokal & Rohlf, 1962).

2. Agglomerative coefficient measures the strength of
resulting clusters (Rousseeuw, 1986).

3. Tree balance measures the equality in the number of
objects between clusters at each merger or partition
(Fern�andez & G�omez, 2020).

A min–max scaling was then applied to each metric and
combined using the Euclidean formula, where the
Euclidean score quantifies the dendrogram’s performance

ECOSPHERE 9 of 28

 21508925, 2023, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4589 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



as a distance from an origin representing the worst perfor-
mance possible. We used the Euclidean formula because
of its flexibility, where metrics can be added, removed, or
weighted, depending on the clustering characteristic(s)
deemed most relevant to the study objective.

While the raw score of each metric covered specific
aspects of a dendrogram’s performance, the combined score
provides an overview of its performance, aiding the selec-
tion of the most appropriate dendrogram. Although inter-
nal validation criteria could also provide useful information
on cluster performances, we focused on dendrogram perfor-
mance metrics because they evaluated the performance of
the entire clustering result rather than a defined set of clus-
ters (Fern�andez & G�omez, 2020; Legendre & Legendre,
2012; Milligan & Cooper, 1985). Dendrogram metrics were
therefore consistent measures of clustering performance,
indifferent to the number of clusters selected. This was vital
because the relationship between clusters across the hierar-
chy was an important facet of the clustering result that
needed to be assessed and because exact cluster boundaries
are less crucial when dealing with arbitrary clusters
(Gauch & Whittaker, 1981; Legendre & Legendre, 2012).

Second, we performed nonmetric multidimensional scal-
ing (NMDS) on each dissimilarity matrix to visualize species
distributions in ordination space. Ordination is a widely
used tool for projecting multivariate data into
low-dimensional space, where (in our case) species are
arranged along reduced axes of geographic distributions
(Legendre & Legendre, 2012). NMDS is regarded as the
most robust unconstrained method and most effective at
reducing complex data (Legendre & Legendre, 2012;
Minchin, 1987). Additionally, NMDS requires no underlying
assumption about linearity or normality, in that any dis-
tance or dissimilarity matrix can be used (Ludwig et al.,
1988). Ordination via NMDS, therefore, represents a useful
approach for visualizing distributional dissimilarities and
investigating the spatial structure of community data. Paired
alongside their respective dendrograms, NMDS ordinations
also provide insight into the formation of cluster boundaries,
thereby aiding interpretations of cluster memberships and
hierarchical relationships. We performed the NMDS using
the “metaMDS” function from the vegan package in R, with
100 random starts based on a fixed initial seed (Minchin,
1987; Oksanen et al., 2007; R Core Team, 2013).

6. Further geographical, ecological, and conservation
analyses

The representative distribution of each cluster was
generated by summing the binary data of member species
at each pixel and dividing values by the total number of
member species (i.e., the proportion of member species pre-
sent). The distribution can be used to visually determine

whether clusters are ecologically meaningful and justifiable
(Di Febbraro et al., 2018; Mainali et al., 2020; Peterson,
2011), to identify consistencies among clustering outcomes,
or as a spatially explicit framework for further spatial ana-
lyses (Currie, 2019; Keddy, 1992; Roxburgh & Chesson,
1998). Binary distributions were used because variable
sampling biases, species prevalence or rarity, and assump-
tions of occurrence probability across species meant that
continuous distributions are debatably noncomparable and
cannot be combined (Elith et al., 2011; Elith & Leathwick,
2009; Merow et al., 2013; Phillips et al., 2006). Moreover,
many applications of SDM require binary outputs, and
binary distributions are easier to interpret than their con-
tinuous counterpart (Fithian & Hastie, 2013; Guisan &
Thuiller, 2005; Liu et al., 2016; Royle et al., 2012).

As a demonstration of the application of distribution-
based species clusters, representative distributions from
the final clustering outcome were used to assess
cluster-specific habitat loss due to land-cover change.
Annual, 300-m2, land-cover maps for the years 1992–2020
(ESA, 2017) were similarly reclassified to forested and
nonforested and resampled to 30 arcsec as in step (2) and
overlayed onto each representative distribution; habitat
loss occurred when a pixel transitioned from forest to
nonforest. For each cluster, habitat availability was quanti-
fied as the sum of representative distribution values
(i.e., the proportion of member species present) within for-
ested pixels, such that pixels with higher proportion values
were weighted higher and nonforested/deforested pixels
were valued at zero. We then calculated and presented
habitat loss for each cluster in three ways: (1) the percent-
age of historically available habitat lost by 1992, lost
between 1992 and 2020, and remaining in the year 2020;
(2) annual percentages of 1992 habitats remaining from
1992 to 2020; and (3) annual rates of habitat loss from
1993 to 2020 as a percentage of available habitats in the
year before. Historical baselines assumed all pixels were
forested and reforested pixels were not considered.

RESULTS

Of the 743 species with sufficient occurrence data, we
accepted the SDM of 390. Accepted models had an aver-
age AUC of 0.76, TSS of 0.52, and OR of 0.10 and 0.04 for
cross-validated occurrences and excluded occurrences
(i.e., within nonforested pixels), respectively.

Variance among association indices

We found association indices to generally capture one of
three aspects of interspecific spatial association, as
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reflected by the three distinct groupings in our PCA of
association values (Figure 2a). The first group consisted
of indices that measure association as differences (bray
and ruz) or distances (hell and chi) in site values
(i.e., occurrence probabilities), which also formed the
tightest and most distinct group. The second group
consisted of binary indices that exclude co-absences (jacc,
dice, and alroy). The last group consisted of two continu-
ous indices that measure association as the correlation
in site values (pears and spear) and three binary indices
that include co-absences.

We also observed a comparatively higher correlation
between pairs of indices with related mathematical proper-
ties, even within already tightly formed groups
(Figure 2b). For example, within the first group, the two
difference-based indices were highly correlated, as were
the two distance-based indices. Combined with the tight
grouping of continuous and binary correlation-based indi-
ces (pears, spear, and tetra) (Figure 2a,b), our results indi-
cate the underlying mathematical property of the index, or
its interpretation of association, as the main factor driving
differences in measurements of association.

Variance among clustering algorithms and
dendrograms

Although it was difficult to separate variances in dendro-
gram outcomes because of the choice of clustering

algorithm rather than association index, we observed some
general trends. The most striking trend was the presence of
reversals, or the upward branching of nodes, among den-
drograms resulting from clustering algorithms UPGMC
and WPGMC (Appendix S1: Figure S4). Reversals greatly
hindered the interpretation of hierarchical relationships
and delineation of discrete clusters, often also resulting in
statistically incomprehensible dendrogram structures (Abe
et al., 2017; Miyamoto, 2012; Wedley et al., 1993). Hence,
we rejected clustering outcomes resulting from the
UPGMC and WPGMC algorithms, regardless of their den-
drogram performance (for variable plots with UPGMC and
WPGMC, see Appendix S1: Figure S5).

Among the remaining five clustering algorithms, vari-
ances in dendrogram structure depended on the underlying
association index (for variable plots of all 12 association
indices, see Appendix S1: Figure S5). Dendrograms based
on Bray–Curtis dissimilarity were generally less varied, as
seen through closely grouped vectors (small between arrow
angles) and high loading scores (long arrow lengths) in the
PCA variable plot (Figure 3a). In contrast, dendrograms
based on Jaccard index were more varied; their vectors
were more dispersed (Figure 3b). Although vectors
representing dendrograms based on Spearman correlation
were also grouped, their loading scores were lower than
those based on Bray–Curtis dissimilarity, which indicated
weaker correlations and higher variances in dendrogram
structure (Figure 3c; for full correlation plots, see
Appendix S1: Figure S9).

F I GURE 2 Comparison of interspecific spatial association (ISA) values among 12 indices, which were subjected to a principal

components analysis (PCA). (a) A variable plot showing the first two PC axes and loadings of the 12 indices. (b) A correlation plot with a

dendrogram showing the topological relationships between indices. For simplicity and ease of visualization, correlation values were colored

from 0 to 1 only. Continuous indices were in red and binary indices were in blue.

ECOSPHERE 11 of 28

 21508925, 2023, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4589 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Dendrogram outcomes indicated groups of associa-
tion indices for which the resulting dissimilarity matrices
exhibited low or high sensitivity to the choice of cluster-
ing algorithm. For example, variations among dendro-
grams based on Jaccard index and Alroy coefficient were
moderately high, even among dendrograms resulting
from the same clustering algorithm (Figure 3b,e). By
comparison, dendrograms based on Bray–Curtis dissimi-
larity and Hellinger distance were generally less varied
(Figure 3a,c). Dendrograms based on Spearman correla-
tion and matching coefficient were also quite similar to
each other (Figure 3c,f). Note that because we compared
dendrograms using Baker’s gamma, variance here
pertained specifically to differences in dendrogram struc-
ture as defined by the relative positioning of their nodes
(for comparisons using co-phenetic correlation, common
nodes, or FM-index, see Appendix S1: Figures S6–S8 and
S10–S12).

Evaluations of dendrogram performance

Dendrogram performance varied substantially across
association indices and clustering algorithms (Figure 4; for
performances of all 84 candidate dendrograms, see
Appendix S1: Figure S13). We first examined performances
among clustering algorithms. Dendrograms most faithful to
the original dissimilarity matrix (i.e., co-phenetic correla-
tion) were generally those resulting from UPGMA,
while the least faithful resulted from CL, SL, and WARD
(Figure 4a). Cluster strength (i.e., agglomerative coefficient)
and balance (i.e., tree balance) were highest for WARD and
second highest for CL, but lowest for SL. Hence, Euclidean
scores were generally higher among dendrograms resulting
from WARD or CL because they performed better on two
out of the three metrics (Figure 4b). Next, among dendro-
grams based on different association indices, dendrograms
based on difference- and distance-based indices (bray and

F I GURE 3 Comparison of dendrograms through a principal components analysis (PCA, applied to all 84 candidate dendrograms). For

clarity, results were separated and plotted for a subset of indices: (a) Bray–Curtis, (b) Jaccard, (c) Spearman, (d) Hellinger, (e) Alroy, and (f)

matching. Each variable plot shows the first two PC axes and loadings of dendrograms resulting from five clustering algorithms (excluding

unweighted pair-group method using centroid and weighted pair-group method using centroid because they led to reversals), which were

based on a particular association index. Note, PC axes and loadings across panels were comparable as they were obtained from the same

PCA. CL, complete linkage; SL, single linkage; UPGMA, unweighted pair-group method using arithmetic average; WARD, Ward’s method;

WPGMA, weighted pair-group method using arithmetic average.

12 of 28 PANG ET AL.

 21508925, 2023, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4589 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F I GURE 4 The performance of dendrograms resulting from five clustering algorithms (excluding unweighted pair-group method using

centroid and weighted pair-group method using centroid because they led to reversals) for a subset of association indices. (a) Dendrogram

performance based on three metrics: co-phenetic correlation, agglomerative coefficient, and tree balance. (b) Dendrogram overall

performance as the Euclidean distance (score) across the three metrics after applying a min–max scaling. CL, complete linkage; SL, single

linkage; UPGMA, unweighted pair-group method using arithmetic average; WARD, Ward’s method; WPGMA, weighted pair-group method

using arithmetic average.

ECOSPHERE 13 of 28

 21508925, 2023, 6, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4589 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



hell) had co-phenetic correlation scores that were higher
(Figure 4a). Agglomerative coefficient scores were typically
lower for dendrograms based on binary indices, except
Alroy coefficient (Figure 4a) and scaled C-score
(Appendix S1: Figure S13). However, we did not observe
any clear differences in tree balance scores among indices.
Hence, Euclidean scores were generally higher among den-
drograms based on difference- and distance-based indices
(bray and hell) because they performed much better in
terms of co-phenetic correlation (Figure 4b). Overall, den-
drograms with the highest Euclidean score were those
based on Bray–Curtis dissimilarity and clustered using
either the UPGMA, CL, or WARD algorithm (Figure 4b).

Evaluations of NMDS plots and
dendrograms

The NMDS stress levels were lowest for difference-based
indices (bray = 0.103; Figure 5a–c), low for distance-based
indices (hell = 0.157; Figure 5d,e), but extremely high for
correlation-based indices (spear = 0.279; Figure 5f,g).
Stress levels were also extremely high for binary indices,
except those of proportional overlap (match = 0.23 and
jacc = 0.227; Figure 5h–k). Higher stress levels suggest
those indices had captured spatial relationships that were
too complex to accurately represent in low-dimensional
space. Thus, separations among clusters in highly stressed
NMDS space may not be visually apparent, while visually
overlapping clusters may be artifacts of imperfectly
reduced axes.

The NMDS plots revealed distinct differences in the
data structure that depended on the choice of association
index. Difference- and distance-based indices resulted in
points that formed a central aggregate with a scattering
of outliers; the former’s outliers were more unidirectional
(Figure 5a–c), and the latter’s more bidirectional
(Figure 5d,e). Comparatively, other indices resulted in
points that were spread more evenly (Figure 5f–i). To a
lesser extent, binary indices that exclude co-absences also
resulted in a central aggregate of points (jacc, dice, and
alroy) (Figure 5j,k).

Cluster memberships showed how the spread of points
affected clustering outcomes under different clustering
algorithms. Clustering algorithms sensitive to outliers,
such as UPGMA, and CL to some extent, tended to classify
the central aggregation of points as one large cluster and
outliers as multiple smaller clusters. We observed this for
difference- and distance-based indices (Figure 5a,b,d) and
binary indices that exclude co-absences (Figure 5j).
Although accompanying dendrograms indicated that the
central cluster could be partitioned at higher values of
k (number of clusters), it would also result in the excessive

partitioning of outlier clusters and higher instances of
one-species clusters. Comparatively, WARD was less sensi-
tive to outliers in general, wherein the central aggregation
of points was partitioned while outliers formed moderately
sized clusters (Figure 5c,e,k). As a result, WARD produced
cluster memberships that were more balanced and thus
more meaningful for subsequent spatial analyses.
Problems with unbalanced cluster memberships were less
pertinent when the association index used resulted in
evenly spread points (Figure 5f–i).

Final clusters of spatially associated species

As the final clustering outcome, we selected clusters
based on Bray–Curtis dissimilarity resulting from the
WARD clustering algorithm, which had the second-best
Euclidean score (Figure 4b). We selected the second best
rather than best clustering outcome because it produced
a more balanced set of clusters and was thus more mean-
ingful for subsequent analyses (Figure 5a,c). Moreover,
its Euclidean score was only 0.01 lower than the best
score (Figure 4b).

The optimal number of clusters k varied across stopping
rules (Appendix S1: Table S2). Among diagnostic graphs,
the L-method identified k = 4 for merging height and
k = 6 for within-cluster variance, regardless of the cluster
center used to quantify within-cluster variance. For
between-cluster variance, the L-method identified k = 5
when aggregated distributions (centroids) were used as
cluster centers and k = 4 when indicator distributions
(medoids) were used instead. However, all diagnostic
graphs showed a relatively smooth curvature (Appendix S1:
Figure S2), suggesting the optimal number of clusters k to
be above 6 as the L-method tends to underestimate k in
such cases (Salvador & Chan, 2004). The bifurcation paired
t-test identified k = 34 and 11, for cluster centers using
aggregated and indicator distributions, respectively. The
bifurcation paired t-test tended to identify a large k when
aggregated distributions were used, particularly for clusters
resulting from WARD, but identified k closer to the other
three stopping rules when indicator distributions were used
instead (Appendix S1: Table S2). This was likely because
medoids typically represent image-type datasets (i.e., raster
maps) better than centroids and are less sensitive to outliers
that might inflate changes in within-cluster variance
(Kaufman & Rousseeuw, 2005; Van der Laan et al., 2003).
Hence, we set k as 11, as identified by the bifurcation paired
t-test when using indicator distributions (medoids).
Although only one value of k was selected, we acknowl-
edged that a range of possible k values exists and explored
other probable values of k in Appendix S1: Figures S14–S16
(Gauch & Whittaker, 1981).
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Clusters of tree species distributions in
Borneo

Resulting clusters and their representative distributions
(i.e., the proportion of member species present) yielded spa-
tially meaningful patterns of tree species distributions in
Borneo (Figure 6a) (for aggregate and indicator species dis-
tributions, i.e., cluster centroids and medoids; see
Appendix S1: Figures S17 and S18). Representative distribu-
tions delineated, to some extent, the geographical unit to
which member species were endemic, and gradients indi-
cate site suitability for supporting member species. The envi-
ronmental conditions underlying each representative
distribution were also extracted to characterize their habitats
(Appendix S1: Figure S19). Interestingly, many of the repre-
sentative distributions here were also observed in other
well-performing dendrograms (Appendix S1: Figure S20),
even when their dendrogram structure or cluster member-
ships differed greatly. This suggests that despite relatively
varied clustering outcomes, well-performing dendrograms
tended to identify clusters reflecting similar spatial patterns.

The first split among species distributions was
between clusters 1–4 and clusters 5–11 and occurred
early (i.e., high merging height in Figure 6b), indicating
high dissimilarity between partitions. This first split sepa-
rated clusters with highly range-restricted distributions
(clusters 1–4) from the rest (clusters 5–11) (Figure 6a,c).
Cluster 3 was distributed predominantly across Borneo’s
western coastal/peatland regions, and clusters 1, 2, and
4 were restricted to separate parts of Borneo’s central
montane region. Many peatland species are known, and
were found here, to occur in montane habitats
(e.g., Litsea accedens and Timonius flavescens; Slik, 2009),
which may explain the grouping of cluster 3 with clusters
1, 2, and 4 (but see Discussion: Challenges of clustering
spatially associated species).

The second split was between clusters 5–7 and clus-
ters 8–11 (Figure 6b,c). Among clusters 8–11, cluster
8 was the most distinct since that cluster split off rela-
tively early in the dendrogram and was distributed
mainly across the western lowlands, like cluster 3, but
more inland than coastal (Figure 6a). In comparison,

F I GURE 6 The visualization of clusters obtained from the second-best performing clustering outcome (Bray–Curtis—WARD) for

number of clusters k = 11. (a) The representative distribution of each cluster, where n equals the number of member species. Representative

distributions were generated by summing the binary data of member species at each pixel and dividing values by n (i.e., the proportion of

member species present). (b) The dendrogram of the clustering outcome and (c) its underlying dissimilarity matrix visualized as a nonmetric

multidimensional scaling (NMDS) plot. Cluster memberships here (k = 11) differed from those in Figure 5c (k = 6). Clusters were

differentiated by color, which were consistent across panels and for Figure 7.
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clusters 9–11 split up much later and at near-identical
levels (merging height = 1.04 and 1.07; Figure 6b), indi-
cating low and even measures of between-cluster dissimi-
larities. While cluster 10 was distributed predominantly
along the eastern lowland regions, clusters 9 and 11 were
distributed across the mid-montane regions but over
areas with vastly different underlying soil conditions
(mainly available water and cation exchange capacity;
Appendix S1: Figure S19).

Lastly, the remaining clusters, 5–7, split up late and at
near-identical levels (merging height = 1.11 and 1.18;
Figure 6b). Cluster 5 characterized the coastal/peatland for-
ests of Indonesian Borneo (south and east Kalimantan),
occupying areas south and east of Borneo’s central moun-
tain range (Figure 6a). Cluster 6 was broadly distributed
across the lowland regions west and south of Borneo’s cen-
tral mountain range. Cluster 7 contained the most species
(n = 89) and had a generally widespread distribution,
though with slightly higher proportion values along the
mid-montane and southeastern lowland regions of Borneo.

Habitat loss due to land-cover changes

We found a substantial loss of habitat due to land-cover
changes for all clusters (Figure 7). By 1992, habitat loss
among clusters averaged 30% (Figure 7a)—highest for
clusters 3 and 5 (38% and 44%, respectively) and lowest
for cluster 2 (22%). Subsequent land-cover changes
resulted in a cumulative mean habitat loss of 43% by
2020—again, habitat loss was highest for clusters 3 and
5 (56% and 61%, respectively) and lowest for cluster 2
(33%) (Figure 7a).

Annual trends made apparent the differences in habitat
loss among clusters. Most striking was the severe and
continued loss of coastal/peatland habitats supporting
clusters 3 and 5, and the western lowland habitats
supporting cluster 8 (Figure 7b). Rates of habitat loss from
1992 to 2020 increased for most clusters and were also
highest for clusters 3, 5, and 8; only clusters 1, 9, and 10
experienced a decrease in rates of habitat loss (Figure 7c).
Annual trends also revealed cycles in habitat loss, oscillat-
ing from a slump to a peak rate of habitat loss (Figure 7b,c).
The first cycle started from a slump in 1994 to a peak in
1998, the second from 2003 to 2007, and the third from
2013 to 2016.

Differing rates of habitat loss between cycles indicate
potential shifts in habitats targeted for land-cover
change. Among montane-distributed clusters 1, 2, and
4 (Figure 6a), cluster 1 experienced higher rates of
habitat loss than those of clusters 2 and 4 in the first
cycle (1994–1998) (Figure 7c). The subsequent cycle
saw a switch, with rates of habitat loss being greater

for clusters 2 and 4 instead (2002–2007). Although
comparatively lower in the third cycle, rates of habitat
loss were still higher for clusters 2 and 4. This was likely
a recent shift, as before 1992, clusters 2 and 4 were the
clusters least impacted by land-cover changes (Figure 7a).
Between coastal-/peatland-distributed clusters 3 and 5,
rates of habitat loss surged for cluster 3 in the second
cycle (2002–2007), but there was also an increase for
cluster 5, albeit an increase of lower magnitude than
for cluster 3. Moreover, the increased rate of habitat loss
for cluster 3 in the second cycle was so great that its
proportion of habitat remaining in 1992 that was lost by
2012 nearly matched that of cluster 5 (Figure 7b).
Although we did not observe a similar surge in rates of
habitat loss for cluster 3 in the third cycle (2012–2016),
its overall increase from 1992 to 2020 was the highest
among clusters (Figure 7c).

DISCUSSION

To capitalize on the emerging wealth of distribution data,
researchers must also contend with a corresponding
increase in data complexity. We demonstrate how the CSAS
offers a way to simplify that complexity to unravel meaning-
ful patterns in species distributions, where resultant clusters
provide a spatially explicit framework for investigating
distribution-related questions in ecology, biogeography, and
conservation (Clements, 1936; HilleRisLambers et al., 2012;
Legendre & Legendre, 2012; Marquet et al., 2004).
Importantly, clusters are quantitatively derived and easily
reproducible, while the methodological framework pro-
motes transparency and peer scrutiny of the methods and
results. The primary advantage of the framework, however,
is that it makes key steps of the clustering process more
explicit, forcing practitioners to carefully consider their
methodological choices in relation to their research objec-
tives (Legendre & Legendre, 2012). Combined with steps
that support practitioners in investigating different methods
and interpreting results, our methodological framework
encourages more informed decision-making and rigorous
selection of final clustering outcomes.

Clusters of spatially associated species with
variable trends of habitat loss

Our methods identified 11 distinct clusters of tree species
in Borneo, based on their spatial distributions, which pro-
vided valuable ecological and conservation insights.
Montane species clusters 1, 2, and 4 had the most distinct
distributions because their ranges were highly restricted.
Their distributions also matched previous predictions by
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F I GURE 7 The impact of deforestation on each cluster’s representative distribution as changes in habitat availability. (a) Bar plots

show the percentage of historically available habitats loss before 1992, loss from 1992 to 2020, and remaining in the year 2020. (b) Annual

percentages of 1992 habitats remaining from 1992 to 2020 fitted using a generalized additive model. (c) Annual rates of habitat loss from

1993 to 2020 fitted using a local polynomial regression with α = 0.75 (solid, colored) and linear regression (dashed, black). Clusters are

differentiated by color and are consistent across panels and for Figure 6.
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Raes et al. (2009): in particular, the high richness of
range-restricted species in the northern montane region of
Borneo coincided with an area of overlap among our three
montane—and some sub-montane—clusters. With narrow
ranges and a lack of areas to migrate upwards in elevation
under climate change (Bellard et al., 2014; Pang et al.,
2021; Yanahan & Moore, 2019), these montane-distributed
clusters are of great conservation value (Guisan et al.,
2013; Struebig et al., 2015; Villalobos et al., 2013). We also
observed clusters restricted to western Borneo: the coastal
distributed cluster 3, slightly more inland cluster 8, and
more widespread cluster 6 that extended further south as
well. Because our SDMs relied on environmental variables,
this restriction stems from a unique set of environmental
conditions (i.e., high precipitation and low clay content;
Appendix S1: Figure S19). Indeed, western Borneo is home
to many endemics and is noted for its unique floral com-
position, with present-day environmental conditions previ-
ously also identified as probable drivers (Neo et al., 2021;
Slik et al., 2003, 2011). Conversely, the more widely dis-
tributed clusters 5, 7, 9, and 10 seem to represent eastern
Borneo, which is characterized by a combination of low
precipitation, low available water capacity, and high soil
clay content (Appendix S1: Figure S19).

Our general results of severe habitat loss corroborated
previous assessments of deforestation in Borneo (Gaveau
et al., 2014, 2016, 2019; Miettinen et al., 2011; Sloan et al.,
2019; Wong et al., 2020), but our classification of species
distributions allowed us to separate variable trends of habi-
tat loss to discern especially threatened species groups.
Clusters with coastal/peatland distributions (clusters 3
and 5) suffered the most severe loss of habitat, likely due
to extensive oil palm expansions that primarily target
coastal/peatland habitats (Gaveau et al., 2014, 2016;
Miettinen et al., 2011). However, the western-restricted,
inland cluster 8 also suffered severe habitat losses, losses
not observed for its eastern-restricted, inland counterpart,
cluster 10. Water stress greatly limits oil palm yields, where
greater rainfall in western than southern/eastern Borneo
may be facilitating oil palm plantation expansions into
the more inland habitats (Carr, 2011; Sa’adi et al., 2021;
Appendix S1: Figure S19). Although deforestation—in
absolute terms—is less extensive in western Borneo
(Gaveau et al., 2014, 2019; Miettinen et al., 2011),
cluster 8 has a narrower distribution than most, resulting in
it suffering the third most severe percentage loss of habitat.

Similarly, because our method separated montane hab-
itats into three distinct clusters, we were able to identify a
switch in habitat loss severity. The northern montane-
distributed cluster 1 suffered habitat losses much greater
in the first cycle (peak in 1998) than those after that (peaks
in 2007 and 2016), potentially related to protected area
implementation and enforcement in the Kinabalu

montane alpine meadows ecoregion that coincides most
with cluster 1’s distribution (Olson et al., 2001; Phua et al.,
2008). However, this protection seemed to not extend to
the more central, western montane-distributed clusters 2
and 4, which suffered greater habitat losses in later cycles.
Our results highlight the emerging threat of land-cover
changes for tropical montane habitat that recent studies
have also confirmed (Feng et al., 2021; Karger et al., 2021),
but there exists variability in those trends of loss. Our
separation of montane species clusters and their variable
loss of habitat can facilitate more targeted conservation
planning to better protect those more threatened in
recent decades (Ashcroft, 2010; Guisan et al., 2013;
Struebig et al., 2015).

The observed temporal oscillations in habitat losses
were also of interest. Oscillations were temporally con-
gruent across clusters, with peaks in 1995, 1998, 2007,
and 2016 that coincided with notable El Niño periods of
1992–1995, 1997–1998, 2005–2007, and 2014–2016
(NOAA, 2022). Moreover, studies have found El Niño
effects to compound with deforestation to increase forest
fire severity and frequency (Chapman et al., 2020;
Huijnen et al., 2016; Sloan et al., 2019; Wooster et al.,
2012; but see Gaveau et al., 2015; Langner & Siegert,
2009), which may explain differing magnitudes of oscilla-
tion among clusters. Because a substantial proportion of
habitat losses was tied to these oscillations, its exact
driver warrants further investigation, for which our clus-
ters provide the framework to accomplish.

Further applications

The application of the CSAS goes beyond separating
trends of habitat loss. We may use clustering outcomes to
investigate structural changes in species associations, for
instance, changes due to the spread of an invasive species
or climate-induced range shifts, which are particularly
underappreciated facets of global change impact on biodi-
versity (Early & Sax, 2014; Keil et al., 2021; Krosby et al.,
2015). Alternatively, we might compare the resultant den-
drogram against a phylogenetic tree to investigate specia-
tion events linked to present-day spatial patterns
(Villalobos et al., 2017), or against dendrograms of func-
tional similarity to uncover coexistence or competitive
mechanisms that underlie co-occurrence patterns (Rüger
et al., 2020).

The representative spatial distribution of species from
each group is also useful for biodiversity monitoring and
management (Cousins, 1991; Webb, 1989). Commonly
used criteria for evaluating the conservation value of
sites, like absolute species richness or beta diversity, are
prone to taxonomic and sampling biases (i.e., the
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so-called Linnaean and Wallacean shortfalls) (Lomolino,
2004; Possingham et al., 2007; Whittaker et al., 2005),
which typically overrepresent widespread and
easy-to-detect species (Boakes et al., 2010; Jetz & Rahbek,
2002; Lennon et al., 2003; Prendergast, 1993). However,
in using species clusters and their representative distribu-
tions instead, site evaluations are unbiased by the relative
number of species from each cluster (Possingham et al.,
2007; Roberge & Angelstam, 2004). Widespread species
will also form their own groups and not affect evalua-
tions tied to range-restricted species. Moreover, represen-
tative distributions indicate the geographical unit to
which member species reside and are, to some extent,
restricted to that geographical unit. Representative distri-
butions are thus highly informative when the goal is to
detect specific ecosystems, protect species ranges, and
assess extinction risks (Guisan et al., 2013; Hannah
et al., 2020).

The difference in spatial biodiversity patterns identi-
fied through our use of species clustering (representative
distributions) in comparison to the “sister analysis” of
site clustering or bioregionalization (bioregions) remains
a grossly underexplored aspect of biogeography and spa-
tial ecology (Jongman et al., 1995; Keil et al., 2021;
Legendre & Legendre, 2012). However, a key difference
is likely that representative distributions are not spatially
discrete (overlaps can and do occur) and better represent
the diversity and distinction of distributional patterns
among species than bioregions, which are by definition
spatially discrete (Clements, 1936; Collins et al., 1993;
Dufrêne & Legendre, 1997). Representative distributions
and bioregions will only be comparable when representa-
tive distributions are spatially nonoverlapping and biore-
gions have nonoverlapping species, that is, a strict
interpretation of Clement’s community model that is
unlikely because of the general lack of supporting evi-
dence among real species communities (Clements, 1936;
Roberts, 1987; Shipley & Keddy, 1987; Westman, 1985;
Whittaker, 1951, 1953; but see Allen & Hoekstra, 1990;
Collins et al., 1993; Hoekstra et al., 1991). Thus, there
may be substantial differences in application between the
two approaches. More research is still needed to evaluate
the implications of using representative distributions ver-
sus bioregions for various ecological applications, such as
developing essential biodiversity variables for informing
conservation planning (Guisan et al., 2013; Jetz et al.,
2019; Struebig et al., 2015). However, we expect species
clusters and their representative distributions to be more
appropriate for investigating and summarizing spatial
relationships or phenomena among species, such as
when investigating climate-induced distribution changes
among lowland- and montane-distributed species or pri-
oritizing the protection of sites that support particular

species clusters (e.g., clusters with coastal/peatland
distributions).

On selecting association indices and
clustering algorithms

Our findings highlight the value of our methodological
framework, not just its individual steps but also the test-
ing of multiple methods. Different association indices
and clustering algorithms led to clustering outcomes that
were highly varied in dendrogram structure, perfor-
mance, and cluster memberships. Data-driven assess-
ments and comparisons and ecological theory need to
guide the selection of an appropriate method.

Exploring multiple association indices is especially
crucial given the sequential nature of steps in our frame-
work, in that the index influences how clustering algo-
rithms work and perform (Jain et al., 1999; Legendre &
Legendre, 2012). In our study, we explored a wide range
of binary and continuous indices with different inherent
mathematical properties. Like previous studies, indices
varied greatly in their measurement of associations but
generally separated into three groups as determined by
their mathematical properties: (1) difference- and
distance-based indices; (2) binary indices that exclude
co-absences; and (3) correlation-based indices and binary
indices that include co-absences (Hub�alek, 1982; Keil
et al., 2021). Given the computational intensity of quanti-
fying associations across entire spatial extents (maps in
lieu of plots), we advocate exploring at least one index
from each group. Beyond the groups described, practi-
tioners may consider other qualities when selecting
(or excluding) indices to explore: the ability to recover
simulated magnitudes of spatial attraction and repulsion,
into which Keil et al. (2021) offer insight; adherence to
the triangle inequality rule (e.g., Hellinger distance), an
important axiom of distance matrices for geometric clus-
tering; nonparametric approaches to allow measurements
between noncomparable data without any prior transfor-
mation (e.g., Spearman correlation for occurrence proba-
bilities between SDM algorithms, or count data between
species with disparate raw abundances) (Warren et al.,
2008, 2019); or popularity and simplicity to facilitate the
interpretation of results (e.g., Jaccard index as propor-
tional overlap).

Our framework emphasizes testing multiple cluster-
ing algorithms because algorithms vary in their capacity
to simultaneously minimize within-cluster and maximize
between-cluster variances. This was observed in the vari-
ation across dendrogram performances, which offer great
insight into selecting clustering algorithms with certain
characteristics (Fern�andez & G�omez, 2020; Legendre &
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Legendre, 2012; Rousseeuw, 1986; Sokal & Rohlf, 1962).
The relative importance of those characteristics, represented
by each dendrogram performance metric, depends on the
research objective. When examining changes in a
community’s spatial structure over time (e.g., due to inva-
sive species introduction or climate-induced range shifts;
Early & Sax, 2014; Krosby et al., 2015), it is important to
minimize data distortions introduced by clustering. Thus,
faithfulness to the original dissimilarity matrix may be the
only priority, in which case UPGMA might be preferred.
Alternatively, if the main objective is to decompose a large
dataset into smaller but evenly sized subsets, cluster
strength and balance may be more important, in which case
WARD and CL might be selected instead. The flexibility of
this step goes beyond our three metrics, where practitioners
may incorporate others of importance, such as space distor-
tion ratio, connectedness, or isolation (see Estabrook, 1966;
Fern�andez & G�omez, 2020; Legendre & Legendre, 2012;
Wirth et al., 1966). Practitioners must also consider the rele-
vance of each candidate algorithm; the selected algorithms
should have linkage functions that align with the study’s
theoretical expectation of how clusters form (see Erman
et al., 2015; Roux, 2018; Seif, 2018). Here, we rejected den-
drograms resulting from UPGMC and WPGMC to avoid
reversals (Abe et al., 2017; Miyamoto, 2012; Wedley
et al., 1993).

Although, for the case study of Borneo, we selected
the dendrogram based on Bray–Curtis dissimilarity
resulting from WARD because it performed (second)
best, this does not suggest that practitioners should
always base their selection on dendrogram performance
scores. For example, Spearman correlation captured asso-
ciations that were inherently more complex (i.e., highly
stressed two-dimensional NMDS), and thus difficult to
maintain during the clustering analysis (i.e., low
co-phenetic correlation scores). However, this complexity
likely stems from Spearman correlation capturing infor-
mation on the directionality of associations—positive or
negative correlation—which may be a point of ecological
interest rather than a basis for rejection. Therefore, we
reemphasize the need for ecological theory to guide com-
parisons of multiple indices. The resultant data structure
of a chosen association index also determines whether
the clustering algorithm achieves meaningful clusters
(Jain et al., 1999; Legendre & Legendre, 2012;
Rajalingam & Ranjini, 2011; Roux, 2018). In cases where
it does not, practitioners might select an alternative—but
comparably well-performing—algorithm instead, as we
did for our case study. Indeed, dendrogram scores pro-
vide crucial information on each clustering outcome, but
data visualizing tools like NMDS are equally vital aids for
selecting methods most appropriate to one’s study
objective.

Challenges of clustering spatially
associated species

Despite substantial variations among candidate clustering
outcomes, broad patterns in tree species distributions
remained relatively consistent as many of those observed
in our chosen clustering outcome were observed among
other well-performing clustering outcomes as well
(i.e., high dendrogram performance and meaningful clus-
ter sizes). This consistency lends credibility to the spatial
patterns of our chosen clustering outcome and the robust-
ness of employing species clusters. However, distributional
patterns characterizing widespread species were irregular,
suggesting the classification of those species to be partly
contingent on the association index and the clustering
algorithm used (Dufrêne & Legendre, 1997; Jongman
et al., 1995; Legendre & Legendre, 2012). Although most
clustering outcomes were still able to discern some general
patterns in widespread species distributions, our findings
highlight that special attention is needed when clustering
widely distributed species, more so because such clusters
may represent hyper-abundant species that comprise the
bulk of stem density and aboveground carbon (Fauset
et al., 2015), where an understanding of their spatial pat-
terns may improve the protection of high-carbon forests
(Siman et al., 2021; Sullivan et al., 2017, 2020).

When interpreting clusters, we must also recognize the
limits of the underlying methods and how that might affect
ecological interpretations. In selecting Bray–Curtis dissimi-
larity, we define associations as absolute differences in
occurrence probability. Hence, dissimilarities were low
between species with probabilities close in value, even
when their binary distributions were nonoverlapping or
when their probabilities were uncorrelated (see clusters
10 and 11 representative distributions vs. their relatedness)
(Figure 6). Because many lowland species exhibited this
characteristic, we found many species with relatively low
dissimilarities (large aggregate of points in the NMDS plot),
which did not apply to other groups of associations indices
(e.g., correlation-based indices). The inverse was also true
for species with highly skewed probabilities (i.e., high dis-
similarities due to sharp probability gradients), which was
probably why highly range-restricted species were predomi-
nantly further dispersed in the NMDS plot. Thus, we
acknowledge that dissimilarities among range-restricted
species and their clusters might have been exaggerated to a
degree, while more nuanced patterns among lowland wide-
spread distributions might have been overlooked.

In selecting the WARD clustering algorithm, resultant
cluster boundaries are typically oddly shaped and evenly
sized (i.e., number of objects per cluster) (Erman et al.,
2015; Legendre & Legendre, 2012; Seif, 2018; Ward,
1963). As a result, WARD was able to partition the large
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aggregate of points and form meaningful clusters. The
trade-off, however, is that WARD often distorts dissimi-
larity space, especially for ecological data where objects
often exist along a continuum (Fern�andez & G�omez,
2020; Holt et al., 2013; Kreft & Jetz, 2010; Legendre &
Legendre, 2012). Hence, resulting hierarchical relation-
ships were likely inaccurate in representing original dis-
similarities and must be carefully interpreted. In
summary, we emphasize that the most appropriate clus-
tering outcome is context-dependent and study-specific.
This need for a flexible combination of ecological theory
and data-driven assessments—to guide practitioners in
considering the benefits and drawbacks of each
method—is embedded in our framework.

CONCLUSION

Unraveling the complexity of species distribution data is
necessary to understand the factors driving the diversity
of distribution patterns among species (Collins et al.,
1993; Keddy, 1992; Marquet et al., 2004). To that end, we
present the CSAS as a way to simplify complex distribu-
tion data and identify distinct distributional patters as we
demonstrated for Bornean tree species. A critical applica-
tion of the CSAS is in uncovering the divergent impacts
of spatially heterogeneous threats among species with
dissimilar distributions, which we revealed through our
analysis of cluster-specific trends of habitat loss due to
land-cover change. The CSAS provides a timely tool
addressing the urgent need to understand global change
impacts on species with dissimilar distributions (Guisan
et al., 2013; Marquet et al., 2004; Struebig et al., 2015).

We facilitate adoption of the CSAS through our meth-
odological framework, which provides a clear and
detailed structure to guide practitioners in developing
species clusters and applying them for geographical, eco-
logical, and conservation research. We emphasize the
importance of (1) exploring multiple association indices
and clustering algorithms, (2) selecting methods based on
data-driven assessments of cluster performance/
optimality (e.g., NMDS plots for visualizing the data
structure and measures of dendrogram performance) and
the relevance or appropriateness of the methods with
respect to the study’s objective (e.g., study’s theoretical
expectation of how clusters form and subsequent applica-
tions of derived species clusters), and (3) discussing the
limitations of the chosen methods and their implications
for ecologically interpreting species clusters and their
representative distributions. Our methodological frame-
work and publicly available codes will support practi-
tioners in leveraging the ever-growing abundance of
distribution data to better understand complex spatial

patterns among species distributions and the disparate
effects of global changes on biodiversity.
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