
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 M

ay
 2

02
3 
royalsocietypublishing.org/journal/rstb
Research
Cite this article: Malchow A-K, Hartig F, Reeg

J, Kéry M, Zurell D. 2023 Demography–

environment relationships improve mechanistic

understanding of range dynamics under

climate change. Phil. Trans. R. Soc. B 378:
20220194.

https://doi.org/10.1098/rstb.2022.0194

Received: 27 September 2022

Accepted: 15 April 2023

One contribution of 17 to a theme issue

‘Detecting and attributing the causes of

biodiversity change: needs, gaps and

solutions’.

Subject Areas:
ecology, theoretical biology

Keywords:
attribution science, individual-based model,

Bayesian calibration, spatially explicit process-

based model, range shifts

Author for correspondence:
A.-K. Malchow

e-mail: eco@anne-kathleen.malchow.nz
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6620248.
Demography–environment relationships
improve mechanistic understanding of
range dynamics under climate change

A.-K. Malchow1, F. Hartig2, J. Reeg1, M. Kéry3 and D. Zurell1

1Institute for Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
2Theoretical Ecology Lab, Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, 93053
Regensburg, Germany
3Swiss Ornithological Institute, 6204 Sempach, Switzerland

A-KM, 0000-0003-1446-6365; FH, 0000-0002-6255-9059; JR, 0000-0003-3269-1929;
MK, 0000-0001-7476-7616; DZ, 0000-0002-4628-3558

Species respond to climate change with range and abundance dynamics. To
better explain and predict them, we need a mechanistic understanding of
how the underlying demographic processes are shaped by climatic con-
ditions. Here, we aim to infer demography–climate relationships from
distribution and abundance data. For this, we developed spatially explicit,
process-based models for eight Swiss breeding bird populations. These
jointly consider dispersal, population dynamics and the climate-dependence
of three demographic processes—juvenile survival, adult survival and
fecundity. The models were calibrated to 267 nationwide abundance time
series in a Bayesian framework. The fitted models showed moderate to excel-
lent goodness-of-fit and discriminatory power. The most influential climatic
predictors for population performance were the mean breeding-season
temperature and the total winter precipitation. Contemporary climate
change benefitted the population trends of typical mountain birds leading
to lower population losses or even slight increases, whereas lowland birds
were adversely affected. Our results emphasize that generic process-based
models embedded in a robust statistical framework can improve our predic-
tions of range dynamics and may allow disentangling of the underlying
processes. For future research, we advocate a stronger integration of exper-
imental and empirical studies in order to gain more precise insights into
the mechanisms by which climate affects populations.

This article is part of the theme issue ‘Detecting and attributing the
causes of biodiversity change: needs, gaps and solutions’.
1. Introduction
Changing climatic conditions are impacting natural systems around the globe,
causing rapid biodiversity changes [1–3]. Two of the most striking and commonly
discussed impacts are distribution shifts [4,5] and changes in population abun-
dances [6,7]. These range dynamics result from an interplay of key ecological
processes such as local population dynamics and dispersal, which are widely con-
sidered to be influenced by the environment [8,9]. An improved, model-based
understanding of how climate affects range and population dynamics through
these key processes may help to better explain and predict the observed responses
[10,11]. Such insights are prerequisite for a quantitative, science-guided basis for
deriving effective conservation measures to mitigate biodiversity loss [12].

A process-based approach to species distribution modelling has been
suggested repeatedly, going beyond purely correlative models [13–16]. It is
expected that process-based models can provide more reliable predictions
under changing conditions by explicitly including causal eco-evolutionary
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mechanisms [8,17] and allowing for the representation
of transient dynamics. Progress towards this goal was
made with hybrid models that couple a phenomenological
habitat model with processes like population dynamics
and dispersal [18]. However, hybrid models do not allow
an explicit link between demographic processes and the
environment to be established. Instead, they assume that
demography scales with a habitat suitability index, that is
typically derived from a correlative model and may combine
multiple land cover and climate variables [19]. Yet, the
relation of such suitability measures to abundance or
growth rate has been questioned [20,21]. Alternatively, a
direct causal link can be established by considering explicit
responses of processes, such as demography, to environ-
mental predictors. For example, Schurr et al. [22] proposed
a spatially explicit process-based model that considers para-
metric demography–environment relationships together
with mechanistic dispersal effects.

Direct measurements of demography–environment
relationships can be obtained by measuring demographic
rates over an environmental gradient, which requires large-
scale and well-designed monitoring schemes [23]. This has
been done for a number of plants [24,25], but only rarely
for animal species, for example fish (brown trout, [26]), or
birds (North-American forest birds [27] and Arctic sea
ducks [28]). As an alternative to direct measurements, Pagel
& Schurr [29] suggested an inverse modelling approach
that simultaneously estimates the demography–environment
relationships and all other process parameters from empirical
data. In the original formulation, they assumed a logistic
growth (as the Ricker model) to describe local population
dynamics [29]. Yet, a benchmarking study based on simu-
lated data suggested that dynamic models with more
complex life histories improved predictions of range
dynamics [30]. Such an extension can be achieved with a
refined population model that does not use a compound
growth rate but considers explicit demographic sub-
processes, such as survival and fecundity, together with
their respective environmental responses.

Individual-based models (IBMs [31,32]) provide a flexible
modelling framework that can accommodate such complex
life histories by considering relevant demographic processes
at the scale of individuals. We thus regard IBMs as ideal candi-
dates for achieving the necessary flexibility [30]. Here, we
extend the statistical framework introduced by Pagel &
Schurr [29] to IBMs and jointly infer demography–environment
relationships and dispersal for initially nine Swiss breeding bird
populations from long-term abundance data. To this end, we
explicitly modelled the demographic sub-processes of juvenile
survival, adult survival and fecundity together with dispersal
by single-species IBMs. All our models were built using Range-
Shifter [33,34], a modular IBM platform for simulating spatially
explicit, eco-evolutionary dynamics that can be generically
applied to different species. Within a Bayesian framework, we
calibrated the IBMs to abundance time series from 267 sites
across Switzerland that span the last two decades. In this
period, complex range and population dynamics have been
observed for Swiss birds [35,36]. Mountainous regions like
the European Alps are particularly susceptible to current cli-
mate change, and altered temperature and precipitation
patterns are already being observed [37]. In Switzerland, the
detected trend in air temperature increase over five decades
(1959–2008) reached 0.35 K/decade, which amounts to about
1.6 times the Northern Hemispheric warming rate [38]. We
therefore expected that the observed range and population
dynamics in Swiss birds are attributable to the climatic changes
of the past decades.

Our goal was to assess if process-based models are able to
provide useful predictions under changing climatic conditions
and if they allow inference on the underlying mechanisms.
For this, ourmodels related different climate layers, which sum-
marized key climatic variables during decisive periods of the
year, directly to the spatio-temporal variation in demographic
rates. We refer to these relationships as demography–climate
relationships (DCRs), since we considered only climatic predic-
tors.We examine the fittedDCRs for patterns across species and
point out potential limitations in their causal interpretation, that
originate from our data-driven calibration approach. To evalu-
ate theDCRs,wemap the demographic rates ( juvenile survival,
adult survival, fecundity) as well as the resulting local growth
rate across Switzerland. Based on the calibrated model, we
assess the impact of two decades of contemporary climate
change on both the growth rate as well as on the abundance
of each species. Such insights can facilitate the communication
of severe consequences of climate change as well as the
design of potential mitigation measures, targeting the specific
demographic processes that are most impacted. Our approach
is applicable to anypopulation forwhich spatio-temporal abun-
dance data are available. It can be flexibly extended to allow
more detailed conclusions by incorporating more complex
DCRs and using more fine-grained predictors.
2. Material and methods
(a) Study area and data
Switzerland features strong elevational gradients, as large parts
are located in the European Alps. The warming rates due to cli-
mate change show high spatial and seasonal variance, with their
peak in summer at 0.46 K/decade and large values in the low-
lands during autumn and in middle and high elevations in
spring [38]. To describe the climatic variation over this landscape,
we used bioclimatic data from CHELSA v. 2.1 [39,40]. It provides
monthly means of daily minimum, mean and maximum tempera-
tures, as well as total precipitation for the years 1901–2019 at a
spatial resolution of 30 arcsec (≈1 km). These climate layers were
averaged over several months for the breeding season (April–
July), autumn (September–November) and winter (December–
February), and standardized using the mean and standard
deviation over the considered set of years (1997–2019). We further
used land cover data from the CORINE project [41] for 2000, 2006,
2012 and 2018 at a resolution of 100m to inform species-specific
maps of suitable habitat (based on published information on habi-
tat preferences, see below). Parameter inference was based on data
from the standardized Swiss breeding bird survey (MHB) for the
years 1999–2019. The MHB produces yearly time series at 267 sites
selected in a systematic-random sampling design [42]. Each site
comprises a 1 km2 square in which the number of breeding
pairs was counted during two or three repeat surveys per year
using the so-called simplified territory mapping method [42]. To
develop models of initial abundance, we further used Atlas data
of the period 1993–1996 [43] that provides a snapshot of counts
at 2318 sites randomly distributed across Switzerland.

(b) Model building and calibration
We selected a list of bird species according to a set of common
characteristics, which allowed us to use the same model structure
for all. We chose passerines that prefer forests, shrubs and



Table 1. Aggregated climatic predictors and their responses as modelled by the demography–climate relationships (DCRs). The climatic variables of mean
temperature, minimum temperature and total precipitation were averaged over a relevant season and, up to the given order, related to a demographic rate as
response variable. These responses include fecundity ρ, juvenile survival sj and adult survival sa. The bracketted response was originally considered, but excluded
due to high collinearity of Twn and Tat.

climatic predictor season abbr. order response

mean temperature during breeding season April–July Tbr 2 ρ

total precipitation during breeding season April–July Pbr 2 ρ

mean temperature during autumn Sep–Nov Tat 2 sj
minimum temperature during winter Dec–Feb Twn 1 (sj), sa
total precipitation during winter Dec–Feb Pwn 2 sj, sa
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mountainous regions as their main habitats, are sedentary or
short-distance migrants, have a similar life history in which
1-year-olds can be considered mature and able to reproduce,
and show changes in spatial abundance between the two Atlas
periods of 1993–1996 and 2013–2016. Focusing on forest and
upland species meant that effects of land use change such as inten-
sification of agriculture are less likely to contribute substantially to
population dynamics [44]. By excluding long-distance migrants,
we could assume that local winter conditions are meaningful pre-
dictors of demographic rates. These criteria allowed us to isolate
the effects of climate on the population dynamics as much as poss-
ible. Further constraints were imposed in order to keep the
parameter calibration feasible: the relatively simple life history
was chosen to limit the number of demographic model parameters
and a minimum number of 170 non-zero counts in the MHB data
was required. Overall, the criteria related to the species’ ecology
and technical aspects of the parameterisation were fulfilled for
nine species: Eurasian bullfinch, European crested tit, Eurasian
treecreeper, Eurasian nuthatch, dunnock, goldcrest, common
linnet, ring ouzel and alpine accentor.

Despite their common characteristics, we expected that the
demography of the species will respond differently to climate
variation [45,46]. To understand these responses, we built
species-specific IBMs with the RangeShifter modelling platform
[33], operated via the RangeShiftR R package [34]. The IBMs
simulate the population and dispersal dynamics of each species
on a regularly gridded landscape of Switzerland. We modelled
population dynamics with a female-only, two-stage model
comprising the stages ‘juvenile’ and ‘breeding adult’, with a tran-
sition time of 1 year between the two stages. The local population
dynamics of this model are characterized by three demographic
rates: juvenile and adult survival probability, sj and sa, and
fecundity ρ. These demographic rates are considered to be
directly and independently influenced by the local climatic
conditions and are thus allowed to vary spatio-temporally, i.e.
among cells and years. This link between demography and
climate is described by six DCRs (table 1). The coefficients of
the DCRs as well as all other model parameters are inversely esti-
mated for each species from MHB survey data within a Bayesian
calibration (figure 1).

To formulate the DCRs, each demographic rate was related to
relevant climate predictors using the structure of a generalized
linear model, with a logarithmic link function for fecundity ρ
and a logistic link for survival, sj and sa. As predictors, we con-
sidered mean or minimum temperature and total precipitation,
averaged over the period of the year that was considered most
relevant for the respective process (table 1): fecundity depended
on the conditions during the breeding period (April–July);
survival probabilities depended primarily on the winter condi-
tions (December–February), with juvenile survival additionally
affected by conditions in autumn (September–November) when
juveniles are independent and are known to suffer from high
mortality. All predictors were included with linear and quadratic
polynomial effects, apart from minimum winter temperature,
which was only included in linear form. Minimum winter temp-
erature was highly correlated with autumn temperature (≈0.76),
and was therefore excluded as predictor for sj (but still included
for sa). Therefore, the DCR of temperature on juvenile survival
should be interpreted as the combined effects from autumn
and winter temperature. Within the IBM simulation, the realized
values of all demographic rates are then obtained from the cali-
brated, species-specific DCRs, using only the climate layers as
input (figure 1).

In our model, survival probability describes the annual mor-
tality that primarily occurs during winter and additionally
during autumn for juveniles. The modelled fecundity ρ includes
all contributions to juvenile survival that occur before the juven-
iles are independent. Therefore, nestling mortality and early
juvenile mortality are included in ρ. Fecundity was further
assumed to be density-dependent, decreasing exponentially
with the ratio nibi of local population density ni and local
resource availability 1/bi [47]. Resource availability was
expressed as the overall strength of demographic density-
dependence 1/b, modulated by the local suitability hi, as
bi ¼ b=hi � 100. This local suitability was determined from habitat
preferences provided by Storchová & Horák [48], which were
used to determine habitat classes that coarsely delineate the typi-
cal habitat of each species. These habitat classes were mapped to
CORINE land cover classes (see electronic supplementary
material, table A.2), yielding binary habitat maps at a resolution
of 100m. Then, the maps were spatially aggregated to a resol-
ution of 1 km by counting the number of 100m2-habitat cells
located within each 1 km2-landscape cell i. The resulting index
ranges from 0 to 100 and was used as suitability index hi. A
10 km buffer around the Swiss border was retained to reduce
boundary effects. To summarize, climatic variables determined
all three demographic rates while habitat suitability only
influenced the density-dependence effect on fecundity.

The process of natal dispersal was modelled in three explicit
stages: emigration, transfer and settlement. The emigration
probability pe described the probability with which a juvenile
embarks on a dispersal event. To identify the destination cell
after transfer, an exponential dispersal kernel with mean disper-
sal distance �d and uniformly distributed direction was evaluated
individually. If the destination was a suitable cell, the juvenile
settled in it. Else, if one of the eight directly neighbouring cells
was suitable, the individual settled there and otherwise died.
Hence, juveniles suffered a dispersal mortality that was additive
to the annual mortality sj. The order of processes in each simu-
lation year was first reproduction, then dispersal, and lastly
survival. We used stochastic initial conditions for each model
run by drawing from an auto-regressive distribution model
[49] that was fitted to the Atlas data of the period 1993–1996.

We estimated the parameters of each DCR simultaneously
with all other model parameters (1/b, pe, �d) inversely from
MHB data using Bayesian inference [50]. As priors for the
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Figure 1. Model workflow: the RangeShifter model (right) has several inputs (green boxes): (1) habitat maps that are generated from habitat preferences (based on
expert knowledge), (2) maps of demographic rates that are derived from demography–climate relationships (DCRs) and climate variables and (3) dispersal par-
ameters. The DCR parameters and dispersal parameters are estimated inversely in a Bayesian calibration, comparing observed survey data and simulated abundances
(yellow boxes).
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climate-independent parameters and the intercepts of the DCRs
we assumed Gaussian distributions with means and standard
deviations derived from the demographic traits provided by
Storchová & Horák [48] and the dispersal traits provided by
Fandos et al. [51] (electronic supplementary material, table A.1).
For the DCR coefficients, we used mildly regularizing truncated
normal priors with βm,n = 0 ± 1 and truncations at [− 5, 5]. To link
model predictions to observations, we compared the simulated
abundance of adult breeding females with the observed breeding
pair counts. For this, we assumed a negative-binomial likelihood
with a truncated Gaussian prior of σ = 50 ± 50, bounded between
0 and 500, on the dispersion parameter. To reduce the stochasti-
city in the likelihood stemming from the non-deterministic
nature of the IBM, all counts were spatially aggregated to
larger cells of (25 km)2 and 20 IBM replicate runs were averaged
for each sample. Posterior distributions were estimated using
Markov chain Monte Carlo (MCMC) sampling with a differential
evolution sampler (DEzs; [52]) implemented by the R package
BayesianTools [53]. We ran three independent DEzs chains per
species-specific calibration. Each chain had a length of 180 000
iterations, of which the first half was discarded as burn-in
period. The MCMCs converged for 8 out of the 9 selected
species. Based on this, the goldcrest was excluded from further
analysis.

(c) Evaluation and analyses
To validate and evaluate model predictions, we examined both
the full IBM simulations and the extracted DCRs. All evaluations
were based on a sample of 400 draws taken from the joint pos-
terior of each species. The full simulations provided spatio-
temporal projections of adult abundance, which were used to
validate the model fit to MHB counts and to the Swiss breeding
bird index [54].

The goodness-of-fit of spatio-temporal projections was
evaluated with RMSE (root mean squared error; electronic sup-
plementary material, table A.3) and Harrell’s c-index ([55];
table 2). The c-index is a rank correlation index that generalizes
the AUC index to non-binary response variables and we used
its implementation in the Hmisc R package [56]. It quantifies
the probability that the ranking of a pair of model-projected
abundances matches the respective ranking of MHB counts in
a given site and year. We henceforth refer to this measure as
spatio-temporal c-index. For further validation, we generated
model projections of total adult abundance time series relative
to the year 1999 (figure 2; electronic supplementary material,
figure A.1, left panel). They were compared to the Swiss
breeding bird index, which directly estimates the same quantity
from MHB data and was thus considered as reference (figure 2;
electronic supplementary material, A.1, right panel). Addition-
ally, we quantified spatial and temporal prediction accuracy
separately with a spatial AUC and a temporal c-index. These fol-
lowed the procedures presented in Briscoe et al. [35], who
compared correlative species distribution models (SDMs) and
dynamic occupancy models (DOMs) for 69 Swiss breeding bird
species. Specifically, we compressed the abundance predictions
to presence–absence data and averaged these across replicate
runs to obtain per-cell occupancy probabilities. We then com-
puted the spatial AUC achieved for each year and averaged
these across all years to obtain a mean yearly spatial AUC. The
temporal c-index (called temporal AUC in [35]) was calculated
by comparing the model projections of abundance time series
relative to the year 1999 with the Swiss breeding bird index
[35]. We used both spatial AUC and temporal c-index for a
direct comparison with the performances of the SDMs and
DOMs presented in Briscoe et al. [35].

As a second step, we visually inspected the conditional
response curves of all six DCRs within the range of observed cli-
matic predictors for each species. This range spanned the 10th
and 90th percentile of climate values occupied by a species,
while the respective second predictor is held constant at its
median. We then extracted the median and credible intervals
for each demographic rate, as shown in figure 3 and electronic
supplementary material, figure A.2. The relationship for fecund-
ity included density-dependence and thus had an additional
parameter (1/b), describing the strength of density-dependence,
and two additional predictors (local habitat suitability hi and
density ni). For deriving the response curves, hi was held
constant at its species-specific median and ni was set to one
breeding pair per 1 km2 cell, yielding the fecundity that is
realized at low densities.

Lastly, we quantified the effects on predicted population
performance that could be attributed to climatic trends over the
observed time period. From the three demographic rates, we
derived a local, low-density growth rate r as an overall measure
of population performance. It was given by the leading eigenvalue
of the transition matrix (as the population-based equivalent to our
IBM), r ¼ ðsa=2Þ þ ððs2a=4Þ þ sj rÞ�ð1=2Þ. As a measure of vulner-
ability to climate change, we assessed the partial response of r
to the observed changes in each climate variable individually
(table 2). For this, we compared a base growth rate, given as the
value predicted at the median value of all predictors, with those
for which a single predictor was changed. The amount of con-
sidered climatic change was determined from the linear trend in



Table 2. Model evaluation results for each species (column 1). The spatio-temporal c-index (a rank correlation index, column 2) measures prediction accuracy in
terms of discriminatory power. Column 3 states the low-density growth rate at median predictor values and columns 4 to 8 give its partial response to the
observed trend in each climate variable. Details are given in the methods section. Colours code for strength of response, where grey denotes little to no effect
(less than 5% change), light red/blue denote small decrease/increase (more than 5% change), and dark red/blue denote strong decrease/increase (more than
10% change) in growth rate. The last column gives the ratio of simulated adult abundance under scenarios of observed and missing climate change. Given are
the median and 80% credible interval.

Tbr Pbr Tat Twn Pwn abund. change

absolute change c-index rmed +1.0 K −11.6 mm +1.1 K +1.5 K +29 mm

bullfinch 0.80 1.20 0.93 1.00 0.96 1.02 0.89 0.85 (0.83–0.90)

crested tit 0.75 1.05 0.94 0.97 0.97 1.01 0.98 0.80 (0.79–0.80)

E. treecreeper 0.77 0.84 1.02 1.00 0.97 1.01 0.98 0.94 (0.90–0.99)

E. nuthatch 0.74 0.56 1.07 1.04 1.00 1.03 1.10 1.07 (1.07–1.08)

dunnock 0.73 1.32 0.97 0.90 0.96 1.00 1.02 0.90 (0.89–0.91)

common linnet 0.72 1.43 1.03 1.05 0.97 1.01 1.10 1.24 (1.24–1.25)

ring ouzel 0.82 1.05 0.95 1.00 1.07 1.02 1.21 1.13 (1.10–1.20)

alpine accentor 0.88 1.05 0.95 0.97 1.00 0.99 1.04 1.10 (1.05–1.13)
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Figure 2. Time series of simulated relative adult abundance (a) and their deviation from the Swiss breeding bird index (BBI, b), with 1999 (the first year of MHB
data) as reference year. Shown are the median and the 80% credible interval. BF, bullfinch (pink); CT, crested tit (dark blue); TC, Eurasian treecreeper (dark green);
NH, Eurasian nuthatch (light blue); DU, dunnock (light green); LI, common linnet (yellow); RO, ring ouzel (orange); AA, alpine accentor (red). Electronic supplemen-
tary material, figure A.1 shows the 95% credible intervals.
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each predictor, accumulated over the 20 years of survey data
(1999–2019). Thus, the vulnerability indicator combines the effects
from both the sensitivity of the growth rate to climate change and
the amount of exposure. However, it takes into account only the
isolated effect from one predictor, while there are likely inter-
actions between the impacts of different aspects of climate
change. As an overall indicator of climate change impact, that sim-
ultaneously considers all predictors as well as their interactions,
we used the full IBM to generate abundance projections under
two scenarios: the factual, observed climate scenario and a coun-
ter-factual no-climate-change scenario, which consisted of trend-
corrected predictors to simulate a stationary climate. The impact
measure was then given by the ratio of projected mean adult
abundance over the years 2017–2019 under the scenarios of
actual versus stationary climate.
3. Results
The goodness-of-fit and discriminatory power of the pos-
terior predictions was assessed using RMSE and the
spatio-temporal c-index for all species. The RMSE ranged
from 1.3 to 5.7 (electronic supplementary material, table
A.3). The spatio-temporal c-index ranged from 72% to 88%
(table 2), indicating moderate to excellent model fit depend-
ing on the species. The two measures ranked models in a
different order but the model for alpine accentor scored
best in both. Separately considering the spatial and temporal
predictive accuracy (electronic supplementary material, table
A.3) showed that all models had good to excellent accuracy in
the spatial predictions, as the spatial AUC ranged from 74%
to 89%, but less and more variable temporal predictive accu-
racy, with the temporal c-index ranging from 42% to 80%
(electronic supplementary material, table A.3). The IBM pro-
jections of total adult abundance are shown in figure 2a,
relative to the initial year when the MHB was launched
(1999). The models for linnet, treecreeper and nuthatch pre-
dicted increasing trends, while stable or slightly declining
trends were predicted for the remaining species. Those
three models also showed the largest deviations from the
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Swiss breeding bird index, which indicated under-predicted
abundance for the treecreeper and over-predicted abun-
dances for linnet and nuthatch (figure 2b). Interestingly, the
temporal c-index, which considers the local abundance time
series at all sites instead of the total Swiss abundance time
series, is highest for these three models. Comparing to the
SDMs and DOMs presented in Briscoe et al. [35], our IBMs
showed lower spatial predictive accuracy in terms of spatial
AUC (electronic supplementary material, table A.3). By
contrast, the IBMs exhibited consistently higher temporal pre-
dictive accuracy than SDMs in terms of temporal c-index.
Considering DOMs, our IBMs improved the temporal
c-index by more than 20% for nuthatch and linnet, and
achieved similar or slightly lower temporal predictive
accuracy for the other species (electronic supplementary
material, table A.3).

The conditional response plots of all six DCRs are shown
in figure 3, with the three response rates in rows and their
respective temperature and precipitation predictors in col-
umns (separate DCRs per species are shown in electronic
supplementary material, figure A.2). For each species, the
DCRs were evaluated over their core occupied climatic
range (given as the central 80% quantiles), while the
respective second predictor is held constant at its median.
The fecundity–temperature DCR indicated a trend of lower
fecundity with increasing breeding season temperatures.
Most species showed a monotonically decreasing relation-
ship, though for the treecreeper and nuthatch, it was almost
constant, and only the linnet exhibited a clear unimodal
response with an optimum at around 10°C: The fecundity–
precipitation DCR showed weak unimodal responses for
bullfinch, crested tit and ring ouzel with optima around
150mm, and a pronounced unimodal response for the dun-
nock with an optimum around 190mm. Surprisingly, for
the alpine accentor this relationship was bimodal (two
optima at the boundaries of a steep inverted parabola),
which is physiologically implausible. The DCRs for juvenile
survival exhibited high values around 6°C mean autumn
temperature for all species apart from the alpine accentor
and around 100mm total winter precipitation for all species
apart from the alpine accentor and linnet. We found a mono-
tonically decreasing response of juvenile survival to mean
autumn temperature for most species except the nuthatch
and ring ouzel. Its response to winter precipitation was
strong and monotonically decreasing for the bullfinch, unim-
odal for the crested tit, treecreeper and dunnock, and
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monotonically increasing for the linnet and alpine accentor.
The ring ouzel exhibited a bimodal response. The DCRs for
adult survival were overall weaker and more uncertain
than those for fecundity and juvenile survival. The relation-
ship between adult survival and minimum winter
temperature was fitted with only a first-order polynomial
(table 1) and results indicated a weak but consistent positive
trend for most species. Only the alpine accentor, a typical
mountain bird, exhibited a constant or slightly decreasing
relationship with temperature, which may be attributed to
its adaptation to low temperatures. The DCR of adult survi-
val with winter precipitation showed slight bimodal
responses for the crested tit, nuthatch, dunnock and linnet
that could be deemed physiologically implausible. The
alpine accentor showed a unimodal response with an opti-
mum at around 100mm, and bullfinch, treecreeper and ring
ouzel showed slightly increasing adult survival with winter
precipitation. We discuss possible explanations for these
physiologically implausible DCRs and give remarks on
their interpretation in the discussion.

To better understand the interplay of the different demo-
graphic processes, we summarized the three demographic
rates obtained from the DCRs to a density-dependent
growth rate r. A species can persist only in regions where
the climatic conditions allow for sufficient growth.
Figure 4a–c shows illustrative maps of each demographic
rate and figure 4d presents the resulting growth rate at low
density (i.e. at one breeding pair per 1 km2) for the ring
ouzel in 2018. The map of growth rates highlights areas of
negative population growth (r < 1) and those of positive
growth (r > 1), thus providing an assessment of demographi-
cally suitable areas. For example, in the northern Alps all
three demographic rates largely coincided in exhibiting high
values, which resulted in positive growth of ring ouzel. By
contrast, some areas in the southern Alps showed high
fecundity but low survival probabilities, which resulted in a
negative population growth.

To assess the impact of the observed climate change on the
study populations, we examined two measures of population
response (table 2). First, we calculated the change in low-
density growth rate caused by the change of individual climate
predictors that was observed over the survey period (second
row in table 2). According to this analysis, the most influential
climate predictors were the mean temperature during breeding
season, Tbr, which tended to decrease population growth, and
precipitation during winter, Pwn, which tended to increase
population growth. The bullfinch and crested tit were consist-
ently disadvantaged by the change in climate predictors, while
the nuthatch benefitted. Other species experienced mixed
effects from the changed climate predictors on their growth
rates, such as alpine accentor and ring ouzel which were
adversely affected by the observed trends in Tbr, but gained
from increases in Pwn. Secondly, we compared abundance pre-
dictions for the years 2017–2019 under the scenarios of
observed climate versus no-climate change (last column in
table 2). According to this analysis, some species showed
lower current abundances than would have been expected
under a no-climate change scenario (bullfinch, crested tit, tree-
creeper, dunnock). The remaining species exhibited higher
predicted current abundances (nuthatch, linnet, ring ouzel,
alpine accentor) indicating that these species profited from cli-
mate change. Presumably, this benefit was primarily driven by
increased winter precipitation. However, a predicted positive
effect of climate change on abundance did not necessarily
result in increasing populations. For example, the ring ouzel
and alpine accentor showed slight negative trends even
under the more favourable scenario of observed climate
change (figure 2).
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4. Discussion
Spatio-temporal changes in species abundance result from a
complex interplay of multiple ecological processes and environ-
mental drivers. In this study, we analysed the range and
population dynamics of Swiss breeding birds using spatially
explicit IBMs that included demographic and dispersal pro-
cesses. We used a generic modelling framework and Bayesian
calibration to jointly infer these processes and their DCRs from
survey data. This procedure allowed us to disentangle the effects
of recent climate change on observed range and population
dynamics and to determine if population trendswere positively
or negatively affected. Yet, results also indicated that care must
be taken when interpreting the fitted DCRs as they need to be
investigated closely for physiological plausibility. Implausible
response shapes can indicatemissing ormisrepresented ecologi-
cal processes,missing environmental predictors, ora lackofdata
to confidently separate the processes. Overall, our framework
shows great promise for fitting process-based models to
survey data and for attributing observed population trends to
ecological and environmental processes [57]. It thus helps
improving our mechanistic understanding of range dynamics
under climate change and pinpointing missing knowledge.

The increasing availability of long-term monitoring
data allows fitting and validating complex process-based
population models [35,58]. In this study, we inversely parame-
terized IBMs based on long-term, nationwide survey data in
Switzerland. Importantly, our framework extends previous
approaches [29] by allowing higher flexibility in the represen-
tation of demographic processes. Our models explicitly
included crucial factors such as density-dependence and cli-
matic impacts on demographic rates [11]. At the same time,
simplifying assumptions were made to obtain parsimonious
models that were able to broadly capture the observed abun-
dance patterns. This included describing the transfer phase
with a dispersal kernel and employing a relatively simple
stage-structured, female-only population model [59]. Model-
ling only the female part of the population was justified by
assuming that reproduction is not limited by adult male abun-
dance, considering that the modelled species breed in pairs
and birds show a balanced or even male-skewed adult sex
ratio [60]. Apart from this, a female-only model does not expli-
citly consider Allee effects and can be thus expected to
perform better for populations with high rather than low den-
sities. The presented framework, however, can accommodate
other modelling assumptions than those exemplified here,
since it is generic and flexible. It uses openly available tools
and can thus be readily applied to other populations.

When validating our spatio-temporal predictions against
observations, our models achieved moderate to excellent
predictive accuracy, with the highest performance for the
alpine accentor. We also evaluated the ability of our models
to predict the adult abundance time-series against the inde-
pendently derived Swiss breeding bird index and found
adequate fit of the temporal dynamics for most species. We
compared our results to the findings of a recent study by Bris-
coe et al. [35], that evaluated the performance of correlative
SDMs and DOMs for predicting range dynamics of Swiss
breeding birds. DOMs represent local occurrence as a result
from colonization and extinction dynamics, but do not expli-
citly consider dispersal. Briscoe et al. [35] found that SDMs
made more reliable spatial predictions, but DOMs provided
superior temporal predictions of occupancy dynamics. Our
results corroborate and generalize these findings, showing
that dynamic population models which explicitly consider
demography and dispersal can provide more accurate predic-
tions of range and population dynamics than other currently
used approaches. Still, SDMs provided better spatial predic-
tions of occupancy and our IBMs improved the temporal
predictions over DOMs only for a few but not all species.
In part, this can be explained by the fact that our IBMs
used fewer predictors and instead imposed structure through
specific assumptions on the causal demographic–ecological
processes. Its predictions are therefore expected to fit less clo-
sely to training data and in turn perform better on
extrapolation. Further, the underlying heuristic habitat
maps were based only on published trait data of main habitat
preferences and may be overestimating the amount of suit-
able habitat. The preferences were given in terms of coarse
habitat classes, such as deciduous or coniferous forest,
while the true habitat preferences may be much more specific
and met in only a smaller subset of the identified habitat
areas. Lower predictive accuracy compared to DOMs could
also be related to structural uncertainty in our models. For
example, the fecundity DCRs of nuthatch and treecreeper
were mostly constant in both predictors such that all spatial
variation in fecundity originated from the habitat maps, poss-
ibly indicating missing environmental predictors. Overall,
our results demonstrate that dynamic models that are suffi-
ciently flexible to reflect main abundance patterns can
improve predictions of range dynamics.

The calibrated DCRs allow investigation into how demo-
graphic processes vary with climate. When interpreting the
individual DCRs, it is important to consider the specific role
of the respective demographic rate within the model. In our
IBMs, juvenile and adult survival rates represent primarily
winter and autumn mortality but do not account for dispersal
mortality. The latter is instead represented by failed dispersal
events and was modelled as climate-independent. Thus, effec-
tive annual survival is lower than suggested by the DCRs and
resulting local population dynamics alone. Further, fecundity
described the number of independent juveniles produced per
breeding pair and year. It therefore subsumes factors such as
the number of broods per year and early juvenile mortality.
Most fitted DCRs showed monotonous or unimodal relation-
ships. For example, fecundity decreased with above-median
temperatures during breeding season for all species. Maxi-
mum juvenile survival was surprisingly high, approaching
100% for some species. This seems unrealistic even under
favourable climatic conditions as juveniles of most species
typically experience higher mortality in their first winter com-
pared to adults. In the context of our model structure,
however, high apparent juvenile survival rates could be com-
pensating for high simulated dispersal mortality. Thus, in
order to compare survival rates of our models against empiri-
cal estimates, the number of juveniles lost during dispersal
needs to be discounted. With respect to parameter uncertainty,
DCRs of fecundity and juvenile survival were more certain
and had smaller credible intervals than DCRs for adult survi-
val. This suggests that fecundity and juvenile survival indeed
depended strongly on climate, while adult survival may be
mediated by additional processes.

Explicit consideration of demographic responses to
environmental factors can improve our mechanistic under-
standing of species niche and range dynamics [22,29].
Despite the advantages of mechanistic models, however,
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they are often difficult to parameterize. Fortunately, inverse
parametrization can make use of commonly available data
such as abundance and occurrence data. Here, all DCRs
were calibrated to observed abundance data, and population
dynamics emerged from the combined effect of the three
demographic processes together with dispersal. Their inter-
actions can entail limited identifiability of parameters from
the available data, if the same abundance patterns arise
from different combinations of survival and fecundity
values. This increases the uncertainty of parameter estimates
[61], leading to uncertain DCRs, and additional data may be
needed for successful calibration. Further, structural model
error can be present where the modelled processes do not cor-
respond to the true ecological processes. In such cases, the
calibration may compensate for flawed modelling assump-
tions and lead to unexpected DCR shapes [61]. The
inversely fitted DCRs are therefore still phenomenological
and their transferability should be interpreted carefully. For
instance, some fitted DCRs were bimodal with two optima
at the extremes of their climatic range. This was found for
the fecundity–precipitation DCR of the alpine accentor and
the juvenile survival–precipitation DCR of the ring ouzel.
Such a relationship is physiologically implausible as demo-
graphic rates typically peak within certain climatic limits.
A possible explanation for the alpine accentor is that the
assumed fecundity–habitat relationship may not hold and
the DCR attempts to compensate for low realized fecundities
at the range margins, where low habitat suitability is pro-
jected. With respect to the ring ouzel, the local winter
conditions may be poor predictors of survival since large
parts of their Swiss population migrates during winter.
Also, for most species, the relationships of adult survival
with winter precipitation was slightly bimodal. This can be
a result from interactions among adult survival and juvenile
survival, which shared minimum winter temperature as a
common predictor. These two DCRs tended to be negatively
correlated for most species, apart from ring ouzel and alpine
accentor, which supports this hypothesis. Such a negative
correlation was also found by Dybala et al. [62], who mod-
elled the impact of climate change on the demography of
song sparrows in California. Tavecchia et al. [63] showed
that climate-driven vital rates do not necessarily imply cli-
mate-driven population dynamics, especially in highly
mobile species, as trade-offs can mask the changes in under-
lying processes. Further, an example for a potential missing
mechanism are negative species interactions [64], which can
confound the value of a DCR, especially towards the range
margins. Therefore, we advise that extrapolation to non-ana-
logue climatic conditions outside the sampled range of
training data should only be attempted if the fitted DCRs
appear plausible. Importantly, despite limitations in interpret-
ability and transferability of individual DCRs, their combined
effects within the full model simulations were still able to
reproduce the observed abundances and yield moderate to
excellent model predictions. Thereby, DCRs facilitate an
improved mechanistic understanding of the underlying pro-
cesses and potentially missing information, which offers
substantial advantages over simple hybrid models [29,30].

Our presented model framework allows complex assess-
ments of the factors and mechanisms that underlie model
predictions. By combining the demographic rates to an overall
growth rate, we can better understand the causes for demo-
graphic suitability of different geographical regions and
compare interpretations across different model frameworks.
For example, we found that the ring ouzel was predicted to
generally persist in high altitudes where fecundity is high
enough, but that some of these high-altitude areas are climati-
cally unsuitable due to high winter mortality. According
to Barras et al. [44], future losses in abundance are expected
especially in the northern Alps, where we predicted highest
current growth rates, and gains in abundance are expected
in the central Alps, where we predicted lowest current
growth rates. To assess the impacts of observed climatic
changes on the demographic performance of the studied
species, we considered two measures of climate vulnerability.
First, evaluating the conditional impact of each climatic pre-
dictor identified breeding-season temperature and winter
precipitation as the most influential variables. This impact is
a combined effect of the magnitude of already observed cli-
mate change and the sensitivity of the growth rate to them.
However, more targeted investigations are needed to under-
stand the biological pathways by which a given abiotic
factor controls an ecological process. For example, Barras et
al. [65] explained for ring ouzel that elevated temperatures
during breeding negatively impacted the feeding of chicks
by parents. Indeed, our model confirms a negative effect of
breeding-season temperature on growth rate for this species.
Also, our predicted current growth rate (1.05) coincides with
the one measured by Barras et al. [66] (1.04). Second, compar-
ing the simulated abundances under observed climate with a
no-climate change scenario, we were able to estimate the
degree to which predicted abundance trends could be attribu-
ted to recent climate change. Such analyses are useful to
understand the overall direction of the combined effects of cli-
mate change on populations. For example, ring ouzel and
alpine accentor show slightly declining population trends,
both in the breeding bird index and in our projections. How-
ever, our models indicated that predicted abundance was still
higher then in the no-climate change scenario, implying that
both species would experience even stronger population
declines without recent climate change. Overall, our models
suggested that typical mountain species tend to benefit from
recent climate change (without necessarily amounting to posi-
tive population trends), while lowland species are already
negatively affected by climate change. We do not expect the
positive effects for mountain species to last far into the future,
as climatic changes become more pronounced. In fact, while
we assessed the effect of contemporary climate change only,
the vulnerability of Swiss breeding birds to future climate
change was investigated previously by comparing current cli-
matic conditions with those in 2100 [67]. According to these
predictions, alpine accentor and ring ouzel will suffer strong
range contractions until the end of this century. Here, correctly
identified DCRs can help to identify promising avenues for
effective management. By explicitly investigating how individ-
ual demographic rates are affected by climate change, targeted
measures can be designed to support these vulnerable
processes and mitigate climate change effects.

Given the broad impact of climate change on ecological
processes, we urgently need better predictions. Our study
demonstrates that calibrating detailed, process-based models
from survey data is feasible and can improve predictions of
spatio-temporal range and population dynamics over other
modelling approaches. Further, explicitly modelling the
responses of separate demographic rates to climate allows
the development of a mechanistic understanding of the
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differential effects of contemporary climate change. Yet, it is
important to acknowledge that our model framework relies
on confiningmodelling assumptions and inverse parameteriza-
tion. It is, therefore, still phenomenological to a certain extent
and the resulting DCRs need to be interpreted cautiously.
Specifically, they should be inspected for plausibility before
making predictions into the future or drawing conclusions for
targeted conservation management. For future research, we
advocate a stronger integration of experimentally or empirically
measured DCRs, for example by adding such information as
strong informative prior in the Bayesian calibration. In order
to determine appropriate model structures for modelling cli-
mate change responses, more abiotic and biotic mechanisms
should be tested, for example by considering additional
environmental predictors and alternative model structures.
Ultimately, this will increase our confidence for drawing con-
clusions on the mechanisms underlying complex range and
population dynamics and making predictions into the future.

Data accessibility. The study uses data from the Swiss breeding bird
survey and the Swiss breeding bird index provided by the Swiss
ornithological institute, Sempach. All scripts and data required to
run the presented analyses can be accessed from the public GitHub
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gEnv_2022 or from the Zenodo archive with doi:10.5281/zenodo.
7830083 [68]. The used R packages are open-source software. Range-
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version was used that is available at: https://github.com/RangeShifter/
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