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Abstract

Generating spatial predictions of species distribution is a central task for

research and policy. Currently, correlative species distribution models (cSDMs)

are among the most widely used tools for this purpose. However, a fundamen-

tal assumption of cSDMs, that species distributions are in equilibrium with

their environment, is rarely fulfilled in real data and limits the applicability of

cSDMs for dynamic projections. Process-based, dynamic SDMs (dSDMs)

promise to overcome these limitations as they explicitly represent transient

dynamics and enhance spatiotemporal transferability. Software tools for

implementing dSDMs are becoming increasingly available, but their parameter

estimation can be complex. Here, we test the feasibility of calibrating and vali-

dating a dSDM using long-term monitoring data of Swiss red kites (Milvus

milvus). This population has shown strong increases in abundance and a pro-

gressive range expansion over the last decades, indicating a nonequilibrium

situation. We construct an individual-based model using the RangeShiftR

modeling platform and use Bayesian inference for model calibration. This

allows the integration of heterogeneous data sources, such as parameter esti-

mates from published literature and observational data from monitoring

schemes, with a coherent assessment of parameter uncertainty. Our monitor-

ing data encompass counts of breeding pairs at 267 sites across Switzerland

over 22 years. We validate our model using a spatial-block cross-validation

scheme and assess predictive performance with a rank-correlation coefficient.

Our model showed very good predictive accuracy of spatial projections and

represented well the observed population dynamics over the last two decades.

Results suggest that reproductive success was a key factor driving the observed

range expansion. According to our model, the Swiss red kite population fills

large parts of its current range but has potential for further increases in den-

sity. We demonstrate the practicality of data integration and validation for

dSDMs using RangeShiftR. This approach can improve predictive performance

compared to cSDMs. The workflow presented here can be adopted for any
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population for which some prior knowledge on demographic and dispersal

parameters as well as spatiotemporal observations of abundance or presence/

absence are available. The fitted model provides improved quantitative

insights into the ecology of a species, which can greatly aid conservation and

management efforts.

KEYWORD S
Bayesian inference, cross-validation, dispersal, inverse calibration, process-based model,
range dynamics, spatially explicit, species distribution model (SDM)

INTRODUCTION

In response to multiple anthropogenic pressures and
environmental shifts, the abundance and distribution of
many species are changing (Díaz et al., 2019; Newbold
et al., 2015; Selwood et al., 2015). Decreasing populations
may be stabilized or even recover by effective conserva-
tion measures (Bolam et al., 2021; Duarte et al., 2020;
Hoffmann et al., 2010). But expanding populations can
also be the focus of conservation interest, for example
when exploring scenarios of future threats or evaluating
the invasive potential of a species (Thompson et al.,
2021). The basis for efficient conservation planning thus
lies in reliable knowledge about the spatiotemporal pat-
terns of abundance and the expected effects of conserva-
tion measures (Guisan et al., 2013; Zurell et al., 2022).

Various approaches have been developed for spatially
explicit population modeling, ranging from purely correl-
ative to detailed mechanistic species distribution models
(SDMs; Dormann et al., 2012; Guisan et al., 2013). Cur-
rently, most spatial model assessments for conservation
planning are based on projections of correlative SDMs
(cSDMs) (Franklin, 2013; Zurell et al., 2022), which sta-
tistically relate species occurrences to environmental pre-
dictors (Elith & Leathwick, 2009). This class of models
can achieve high flexibility and may be readily fitted to
available occurrence data, but their geographical and
temporal transferability is limited (Araújo & Peterson,
2012; Wenger & Olden, 2012). Furthermore, they only
provide stationary or time-implicit projections, which
rely on the assumption that the observed distribution
stays in equilibrium with its environment, even if the
environmental conditions change (Guisan & Thuiller,
2005). However, this assumption is commonly violated in
conservation-relevant cases, such as for invasive species,
in reintroduction programs, or for threatened populations
affected by ongoing environmental change. This leads to
inaccurate predictions because the true species distribu-
tion is actually transient and, thus, dependent on time
and history (Santos et al., 2020; Semper-Pascual et al.,
2021; Watts et al., 2020).

Such dynamic abundance patterns can be represented
with spatially explicit process-based SDMs (hereafter
called dSDMs). These models explain present species dis-
tributions and abundances as the result of interacting eco-
logical processes, such as demography, dispersal, and
evolution (Urban et al., 2016). To this end, dSDMs explic-
itly describe at least one of these processes to model spatio-
temporal and potentially transient population dynamics.
Examples include representations of local population
dynamics (Barber-O’Malley et al., 2022; Keith et al., 2008)
and limiting processes like dispersal (Broms et al., 2016;
Hefley et al., 2017; Risk et al., 2011; Smolik et al., 2010;
Wikle, 2003), physiology (Rodríguez et al., 2019), or spe-
cies interactions (Pellissier et al., 2013; Schweiger et al.,
2012). Further, dSDMs often include stochastic elements
to account for processes not explicitly described by the
model or for intrinsic variability. Thanks to the integration
of ecological theory, dSDMs are expected to provide more
accurate predictions under extrapolation and, thus, to be
more readily transferable to nonanalog conditions than
cSDMs (Gallien et al., 2010).

A challenge for working with dSDMs is their specifi-
cation and validation (Schmolke et al., 2010). Fully speci-
fying a dSDM includes two main steps, both of which
require distinct types of knowledge about the population
of interest (Singer et al., 2018; Figure 1). First, in the
model building step, the model structure and the func-
tional description of the relevant processes are
established. Both are usually chosen based on ecological
theory and expert opinion. Second, in the parameteriza-
tion step, the numeric values of all model parameters,
such as demographic and dispersal rates, are determined
by direct or inverse (also called indirect) parameteriza-
tion or a combination of both. Direct parameterization
uses estimates of process parameters based on data col-
lected in the field or from experiments. Inverse parame-
terization determines likely parameter values by
comparing the generated model response, typically spa-
tiotemporal abundance or occurrence, with observed field
data. To make efficient use of all sources of information
and combine both direct and inverse parameterization, a

2 of 19 MALCHOW ET AL.

 19395582, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2966 by U

niversitaetsbibliothek, W
iley O

nline L
ibrary on [17/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Bayesian calibration framework can be employed. In this,
the direct parameterization and its uncertainty are
expressed as prior distributions. The prior is updated via
Bayes’ rule using a likelihood that measures how well a
given set of parameter values is able to reproduce the
observed response data. This updated prior yields the pos-
terior distribution (Hobbs & Hooten, 2015). The proce-
dure thus identifies parameterizations that are consistent
with the data and can generate new knowledge on the
studied population, as prior estimates of process parame-
ters are modified by new data and their uncertainty may
be reduced. This approach further allows the consistent
propagation of uncertainty from the data sources through
to model projections (Hartig et al., 2012; Jaatinen et al.,
2021; Marion et al., 2012). Ultimately, in the validation
step, the predictive performance of the specified model is
assessed. For this, the model is evaluated on a set of test-
ing data that, ideally, is independent of the training data.
One way to generate the training and testing data is

cross-validation, in which the full data set is partitioned
in a prescribed way, for example, in leave-p-out or k-fold
cross-validation (Arlot & Celisse, 2010). The final, vali-
dated model can be used to generate projections to other
times or places and to compare the outcome of alterna-
tive management scenarios (Bleyhl et al., 2021).

Despite repeated calls for more dSDM approaches,
the widespread use of dSDMs for conservation applica-
tions has been hampered by technical challenges with
respect to their parameterization and validation (Briscoe
et al., 2019). With the proliferation of novel methods for
the various model building steps, software tools are being
developed that assist their case-specific implementation.
In R, these are available as packages for building differ-
ent types of complex dSDMs (Fordham et al., 2021;
Hagen et al., 2021; Landguth et al., 2017; Malchow et al.,
2021; Moulin et al., 2021; Visintin et al., 2020), for model
calibration (Csilléry et al., 2012; Hartig et al., 2019), and
for cross-validation (Valavi et al., 2019). However, their

F I GURE 1 Calibration and validation workflow for process-based, dynamic distribution and population models. Different types of

knowledge are needed to specify the model structure and parameterization. Their direct specification can be informed from literature data,

expert opinion, and ecological theory. In a calibration, the direct knowledge on model parameters is combined with observations of the

modeled response. When using Bayesian inference, this is done via the likelihood function evaluated for these data. For cross-validation, the

calibration is repeated for different subsets of data using the held-out data to measure predictive performance. Multiple outcomes can be

derived, both from the posterior distribution directly and from model projections. Obs., Observed; Sim., Simulated.
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combined application in integrated modeling workflows
is still challenging and rarely done.

In this study, we present a complete calibration and
validation workflow for dSDMs, utilizing heterogeneous
data for direct and inverse parameterization. As a case
study, we modeled the Swiss population of red kite (Milvus
milvus). This population has a highly dynamic recent his-
tory with accelerating increases over the last 50 years
(Aebischer & Scherler, 2021), rendering a dynamic model-
ing approach adequate. We first built a dSDM with the
individual-based modeling (IBM) platform RangeShiftR,
which explicitly simulates the processes of population
dynamics and dispersal (Malchow et al., 2021). Then, its
process parameters were directly parameterized using
published literature data (Appendix S1: Table S1). This
direct parameterization was subsequently updated by inte-
grating information from long-term, structured survey
data with Bayesian inference using the R package
BayesianTools (Hartig et al., 2019). Finally, the predictive
performance of the calibrated model was evaluated by
cross-validation on spatially blocked data folds (Roberts
et al., 2017). To test our workflow, we investigated
whether the calibration could successfully inform parame-
ter estimates and which process parameters were most
sensitive to the survey data. Comparing the prior and pos-
terior predictive distributions under our model, we
assessed whether the calibration improved model fit and
reduced uncertainty. Predictive performance of the fitted
model was evaluated in a spatial-block cross-validation
and compared to a cSDM fitted to the same data. Lastly,
the calibrated model was used to explore the potential
population size and distribution of red kite in Switzerland.

Our workflow (Figure 1) is intended to guide the
application of complex dSDMs to populations with
nonstationary dynamics. Variable dynamics, such as sub-
stantial increases or decreases, possibly interspersed with
constant phases, are needed to disentangle the dynamic
processes that constitute a dSDM. This requires the avail-
ability of suitable data sources for direct and inverse
parameterization. Using formal methods for calibration,
validation, and uncertainty quantification, our workflow
links process-based models with monitoring data to pro-
duce a sound quantitative basis for management deci-
sions that is explicit about all uncertainties involved
(Zylstra & Zipkin, 2021).

MATERIALS AND METHODS

Data

We utilized two sources of monitoring data of the red kite
in Switzerland: the Swiss breeding bird atlas that

provides snapshot data from two periods (1993–1996)
(Schmid et al., 1998; and 2013–2016, Knaus et al., 2018)
and the Swiss common breeding bird survey (MHB, by its
German initials) (Schmid et al., 2004), which provides
abundance time series for every year since 1999. We used
the MHB series up to the year 2019. Both schemes are
based on so-called simplified territory mapping of a
systematic-random sample 1-km2 squares across
Switzerland and record the number of observed breeding
pairs (BPs) during two to three repeat surveys per breed-
ing season along a fixed survey route of typically 4–6 km
in each square (Schmid et al., 2004). The atlas survey data
used here included 2318 sites, each of which was sampled
in 1 year within each 5-year period, while the MHB sur-
vey included 267 sites sampled annually. Further, we
used land-cover and bioclimatic data as environmental
predictors. Land cover was represented with the CORINE
Land Cover (Copernicus Land Monitoring Service, 2022)
classification (44 classes), obtained for the years 2000,
2006, 2012, and 2018 at a spatial resolution of 100 m. Cli-
mate was represented by the 19 WorldClim bioclimatic
variables. We used averaged annual values from the time
period 1979–2013 with a spatial resolution of 30 arcsec
(~1 km) obtained from CHELSA Bioclim version 1.2
(Karger et al., 2017; Karger, 2018). An overview of all
data sources and their use in the modeling process is
given in Appendix S1: Tables S1–S3.

Modeling

Our dSDM comprised two components, which are
detailed in the following section: (1) a static habitat
model that describes the habitat suitability in each year
over the study region and (2) a mechanistic IBM
(Railsback & Grimm, 2019) that describes the population
and range dynamics. IBMs use a bottom-up approach in
which key processes are formulated at the individual
level and are scaled up to the population level by numeri-
cal simulation (DeAngelis & Mooij, 2005). All analyses
were conducted using the statistical programming lan-
guage R (R Core Team, 2020) and several R packages (see
below).

Habitat suitability of Swiss landscape

Habitat suitability was derived from a cSDM based on
presence–absence data from the second atlas (2013–2016)
data set. Because the red kite has been expanding its
range in Switzerland during the past 50 years, these most
recent data best reflect the underlying habitat require-
ments. For the cSDM, we assumed that most suitable
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habitats were already occupied, even though they might
not have reached their potential capacities yet. The red
kite is a generalist and opportunistic raptor that breeds in
a wide range of climates and habitats. Its typical nesting
habitat consists of forest patches with suitable roosting
sites and adjacent open areas like grassland or agricul-
tural fields that provide prey, which mostly consists of
small mammals. Food sources like open waste dumps
and carrion are readily exploited where present. To repre-
sent the availability of resources relevant for the occur-
rence of red kites, we used the CORINE 2012 land cover
data (Copernicus Land Monitoring Service, 2022) and
aggregated its 44 classes to seven land cover types
(Appendix S1: Table S2). To represent climatic influ-
ences, all 19 Bioclim variables were included
(Appendix S1: Table S3). Since the red kite requires
different habitats for nesting and foraging, it is a mobile
species and occupies breeding home range sizes of about
4–5 km2 for males (Baucks, 2018; Nachtigall, 2008). To
allow the cSDM to consider the diversity of habitat types,
we used a grid cell size of 4 km2. Since the IBM was
based on the same grid, this also constitutes a trade-off
between the abilities to resolve both the effects of density
dependence on the one hand and dispersal displacements
on the other. The high-resolution land cover data were
aggregated to the target resolution of 2 km by calculating
the proportional land cover in each cell. The bioclimatic
data were coarsened to the 2-km resolution by bilinear
interpolation between the grid cells.

To fit the cSDM habitat model, we first selected predic-
tors from all land-cover and bioclimatic variables based on
their univariate importance (assessed by the AIC of linear
models with second-order polynomials) under the con-
straint that pairwise Spearman correlations must not
exceed 0.7 (Dormann et al., 2013). The variables selected
are labeled with an asterisk in Appendix S1: Tables S2 and
S3. We then created an ensemble cSDM by taking the
mean occurrence probability predicted by four different
algorithms: binomial linear model with second-order poly-
nomials and stepwise variable selection; binomial additive
model with splines; random forest; and boosted regression
trees. The predicted probabilities are subsequently
interpreted as a habitat suitability index (HSI). The ensem-
ble cSDM was then projected to Switzerland and a 12-km
buffer around its border in the years 2000, 2006, 2012, and
2018, with varying land-cover data and constant biocli-
matic variables. Climate was kept constant because it was
considered only a minor driver of change in resource avail-
ability over the study period. The buffer was applied to
reduce potential boundary effects in the IBM simulations.
It was large enough to capture most dispersal events in the
Swiss population. For all other years in the period of 1999–
2019, the HSI values were linearly interpolated. To

distinguish between habitat and nonhabitat cells, we
derived a banalization threshold (dHSI¼ 0:51) as the value
yielding equal sensitivity and specificity (≈90%) and con-
sidered all cells with lower HSI values nonhabitat.

IBM

We used the R package RangeShiftR (Malchow et al.,
2021), which is an interface to the individual-based
modeling platform RangeShifter 2.0 (Bocedi et al., 2021),
to construct a dSDM based on the gridded habitat suit-
ability maps described above. Next, we describe the main
steps of the direct parameterization and refer to the full
Overview, Design concepts, Details (ODD) protocol
(Grimm et al., 2020) in Appendix S2 for all details.
RangeShiftR explicitly simulates demography and dis-
persal in discrete unit-time steps, which here comprise
1 year. During each year, the processes “reproduction,”
“juvenile dispersal,” “survival,” “development,” and
“aging” are evaluated in this order for all individuals.
The prior distributions on the respective process parame-
ters (Table 1) were informed by literature data
(Appendix S1: Table S1) and expert knowledge. They
were then updated with information contained in the
survey data via Bayesian inference as described in the
section Bayesian calibration.

Our model is female-based, since females primarily
determine the population dynamics in red kites. Their
development is described in three stages (Figure 2), with
classifications and age ranges adopted from Sergio et al.
(2021) and Newton et al. (1989): Dispersing juveniles
are 1 or 2 years old, subadults establish a territory
within their second to sixth year, and breeding adults
are aged between 3 and 12 years. A senescent stage
was not included in the model because it does not
contribute to the overall fecundity, and nonbreeding
adults are not monitored in the survey. These age limits
are not strict, as the stage transitions are modeled
probabilistically (Figure 2). The transition probabilities
τm,n are expressed as survival probabilities of stage s,
σs ¼ τs,s + τs,s+1, and the development probabilities
γs ¼ τs,s+1σ− 1

s . Both can independently vary between
zero and one. The development probabilities are assumed
to be γ1 ¼ 0:80�0:10 for Stage 1 and γ2 ¼ 0:55�0:10 for
Stage 2, to approximately yield the described age classes
(Appendix S1: Figure S1). The survival probabilities σ are
taken from Katzenberger et al. (2019) for all three stages:
σ1 ¼ 0:42�0:08 and σ2 ¼ 0:68�0:09 and σ3 ¼
0:80�0:05, which is also in accordance with Schaub
(2012) and Newton et al. (1989).

Fecundity ϕ was assumed to be density-dependent
and was modeled as exponentially decaying with
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population density. Each cell i is characterized by a local
strength of demographic density dependence bi, which is
obtained as the global strength b divided by the cell habi-
tat suitability HSIi, bi ¼ b HSI− 1

i , given in units of cell
area (ac ¼ 4km2). Fecundity follows the relation
ϕi nið Þ¼ϕ0e

− bi ni , where ni denotes the density of adults
in Stages 2 and 3 in cell i (i.e., juveniles do not contribute
to this density dependence). The base value ϕ0 is the
required process parameter and denotes the theoretical
fecundity at zero population density. Nägeli et al. (2021)
report a realized fecundity of 1:77�0:70, which agrees
with Schaub (2012) and Nachtigall (2008). We assumed
that this value was reached at a density of 25 BPs per
100 km2 (i.e., 1 BP per cell) and halved it for our female-
only model: ϕ1 ¼ϕ n¼ 1=acð Þ¼ 0:88�0:35. We can then
get ϕ0 from ϕ0 bð Þ¼ϕ1e

b=HSI, with b as a calibration
parameter that controls the strength of density-
dependence in fecundity. The HSI over all habitat cells
had a mean and SD of 80%±12%, and we assumed that
the lower and higher fecundities were attained in the

lower- and higher-quality habitats. This was given with a
range of b¼ 0:50�0:15ð Þac (Appendix S1: Figure S2),
yielding ϕ0 ¼ 1:65�0:51.

Dispersal is explicitly modeled in three stages: emi-
gration, transfer, and settlement (Travis et al., 2012). Red
kites are strongly philopatric (Newton et al., 1989), so
that emigration was modeled as occurring in the first
developmental stage, that is, dispersing juvenile, only.
The emigration probability was assumed constant at
e1 ¼ 0:64�0:10, meaning that an expected proportion of
87% of juveniles have dispersed within their first 2 years.
This value best matched observations in which 42% of
females of a cohort have emigrated after Year 1 and 45%
after Year 2 (author’s own unpublished data), suggesting
a larger proportion of emigrants among 2-year-old juve-
niles than among 1-year-old juveniles. The transfer phase
described the movement of a dispersing individual
through the landscape. It was modeled as a strongly cor-
related random walk in a random direction with a step
length equal to the cell size. After each step, the option to
end the movement and settle in a cell for future breeding
site was evaluated. Settlement was only possible in habi-
tat cells, and its probability was density-dependent with
a sigmoid relationship (Appendix S1: Figure S3). Its
inflection point βs was a calibrated parameter and was
estimated as bβs ¼ βs=b¼ 4�4ð Þa− 1

c . The maximum settle-
ment probability and the slope parameter were fixed at
αs ¼ − 1 and s0 ¼ 0:75, respectively, in order to reduce
flexibility. At these values, the choice of just βs makes it
possible to tune the density-dependent settlement across
a wide range of reasonable relationships (Appendix S1:
Figure S3). The maximum number of steps in the random
walk was set to 10. Therefore, depending on the availabil-
ity of sparsely populated habitat, individuals exhibit dis-
persal distances between 2 and a maximum of 20 km,
which is consistent with observations (authors’ own
unpublished data; Nachtigall, 2008; Newton et al., 1989).

TAB L E 1 Process parameters of IBM included in Bayesian calibration and parameters of their truncated normal prior distributions.

Parameter name Lower bound Mean SD Upper bound

Density dependence, b− 1 0.001 0.006 0.0025 0.020

Fecundity, ϕ0 0.5 1.66 0.51 5.0

Survival probability, σ1 0.01 0.42 0.08 0.99

Survival probability, σ2 0.01 0.68 0.09 0.99

Survival probability, σ3 0.01 0.80 0.05 0.99

Development probability, γ1 0.01 0.80 0.10 0.99

Development probability, γ2 0.01 0.55 0.10 0.99

Emigration probability, e1 0.01 0.80 0.10 0.99

Settlement inflection point, βs −15.0 4.0 4.0 15.0

Dispersion parameter, ν 1.0 50.0 250.0 500.0

2–6 years 3–12 years1–2 years

F I GURE 2 Life-cycle graph of population model for red kite

with three developmental stages. The probability that an individual

in stage s will stay in its stage over one time step (1 year) is denoted

by τs,s, and the probability that it will move to the next stage is

denoted by τs,s+1. Only Stage 3 produces offspring, with a fecundity

of ϕ.
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Longer-range dispersal events are also frequently
observed, but they were excluded from the model due to
the small study region and the mountainous terrain.
Immigration or emigration of individuals across the sys-
tem boundaries was not considered.

The initial conditions of each simulation were sto-
chastic. The number of adult individuals in each cell was
drawn from a Poisson distribution whose mean values
were predicted from a generalized linear model. This
model of the initial red kite distribution was an
autoregressive distribution model (Dormann et al., 2007)
of the earlier atlas data (1993–1996) with the spatially
interpolated values of atlas counts as its sole predictor
(Appendix S1: Figure S4). The number of juveniles and
subadults was subsequently estimated from the demo-
graphic rates under the assumption of a stable stage
distribution.

Bayesian calibration

We used Bayesian inference to evaluate the joint poste-
rior distribution of nine model parameters θ based on
their prior distributions p θð Þ and the likelihood l θð Þ (Fig-
ure 1). The priors express the a priori information that
we assumed about likely parameter values as summa-
rized in Table 1. The likelihood function l θð Þ measures
the fit of a model M, parameterized with θ, to the moni-
toring data. The estimated model parameters are as fol-
lows: strength of density dependence 1=b; six
demographic probabilities for survival of all stages (σ1,
σ2, σ3), juvenile and subadult development (γ1, γ2), and
base adult fecundity (ϕ0); and two dispersal parameters
to control emigration (e1) and settlement probabilities
(βs). Additionally, we calibrated a dispersion parameter ν,
which is introduced in what follows.

As priors p θð Þ we chose truncated normal distribu-
tions for all parameters. Their means and
SDs were informed from the literature and expert
opinion, and they were bounded to their respective
valid parameter ranges (Table 1). As calibration data,
we used observed abundances from the MHB survey,
DMHB. Based on these data, we defined a likelihood

l θð Þ¼ p DMHB jθ,M
� �

as follows: For a given parameter

vector θ, the RangeShiftR simulation model (M) was run
and the output abundance data were aggregated
and averaged over 20 replicate runs of the model. The
result Dsim was compared with the MHB counts under
the assumption of a negative-binomial (NB) error distri-
bution, so that for an observation at site i and time t,

li,t θð Þ¼ PrNB DMHB,i,t jμ¼Dsim,i,t,ν
� �

. The parameter ν

describes the error overdispersion and was also estimated

from the data. It arises in an alternative formulation of
the NB probability mass function PrNB formulated in

terms of its mean μ and dispersion ν, instead of the more
common success probability r¼ νμ+ ν and the target
number of successes n¼ ν. Therefore, its variance is given
by σ2 ¼ μ+ μ2ν. It approaches μ from above when ν!∞,
as the NB converges to the Poisson distribution. The
amount of overdispersion can thus be tuned by the value
of ν, rendering PrNB an appropriate error description for

potentially overdispersed count data.

Due to the stochasticity inherent in our simulation
model, the likelihood values calculated from repeat simu-
lations were still stochastic to some extent. They thus rep-
resent an estimator of the exact likelihood. Conceptually,
this is not a problem for our Markov chain Monte Carlo
approach (MCMC, details below), since the pseudo-
marginal theorem guarantees that the MCMC sample
still converges to the exact posterior distribution
(Andrieu & Roberts, 2009). In practice, however, large
variances in the likelihood estimator can increase the
time required for MCMC convergence dramatically when
the sampler gets stuck at occasional high values. To
reduce the variance in the likelihood estimates, we aggre-
gated the abundance data within spatiotemporal blocks
of 14 × 14 grid cells in space and 3 years in time
(Appendix S1: Figures S5 and S6). These aggregation fac-
tors were chosen with the target of reaching a variance
below 10 on the logarithmic scale in repeated likelihood
evaluations for a given θ (Appendix S1: Figure S7). The
aggregation resulted in 57 spatial and five temporal
blocks, within which the observed and simulated red kite
densities were compared. Under the usual independence
assumption, the total likelihood was then expressed as
the product over all such blocks: l θð Þ¼Q57

i¼1

Q5
t¼1li,t θð Þ.

To validate the calibration setup and assess the sensi-
tivity of the likelihood l θð Þ to changes in the model
parameters θ, we performed a local sensitivity analysis
(Appendix S1: Figure S7). For this, a test data set DSA was
simulated from the model with all parameters at their
mean prior values. Then one parameter at a time was
varied within the boundaries of its prior distribution
while keeping all other parameters at their mean and
estimating the likelihood with respect to DSA. Further,
we performed a global sensitivity analysis with Morris’
elementary effects screening method (Morris, 1991).

To estimate the joint posterior distribution based on
the defined p θð Þ and l θð Þ, we used a MCMC sampling
scheme (Luengo et al., 2020). Therein, the posterior den-

sity p θjDMHB ,M
� �

of a series of given parameter sets θ

was evaluated according to Bayes’ rule. The utilized
MCMC algorithm was a variant of the adaptive Metropo-
lis sampler, namely, the differential evolution sampler

ECOLOGICAL APPLICATIONS 7 of 19
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with snooker update (DEzs, ter Braak & Vrugt, 2008), as
implemented in the BayesianTools R package
(Hartig et al., 2019). Every calibration run included three
independent DEzs-MCMC instances with a length of
2 × 105 iterations, of which the first 5 × 104 were
discarded as burn-in. Each DEzs, in turn, consisted of
three interdependent internal chains, so that each cali-
bration comprised a total of nine chains. The chains were
checked for convergence using trace plots, trace rank
plots (Vehtari et al., 2021), and the multivariate potential
scale reduction factor (PSRF; Gelman and Rubin (1992)).
A chain was considered approximately converged if its
multivariate PSRF value dropped below 1.10 and the
trace and trace rank plots showed well-mixed chains.

To assess the information gained in the calibration,
the sampled posterior distributions were contrasted with
the prior distribution. To this end, the parameter esti-
mates were compared with respect to the medians and
quantiles of their respective marginal distributions. To
evaluate whether and by how much the uncertainty was
reduced, we assessed and compared the distribution
breadth by calculating the width of the highest-
posterior-density intervals (HPDIs).

Cross-validation and prediction

We employed a spatial-block cross-validation scheme to
evaluate the model fit without duplicate use of data for
both model calibration and validation (Roberts et al.,
2017). To this end, the data were split into five spatially
contiguous folds (Figure 1 and Appendix S1: Figure S5).
For each fold, the respective subset of MHB data were
held out and the model was fit to the remainder of the
data. To ensure that the folds covered largely identical
spaces of environmental conditions, we chose longitudi-
nally structured folds that included a similar altitudinal
profile. For model validation, the respective calibration
results for each fold were used. For final model projec-
tions, in turn, a separate calibration on the full data set
was used.

Posterior model predictions were generated by tak-
ing a sample of 1000 draws from the joint posterior,
running the dSDM with each drawn parameter vector,
and calculating the mean, median, and 95% credibility
interval of the simulated abundances. Prior predic-
tions were obtained in the same way but using draws
from the prior distribution. Both prior and posterior
predictions were run for the time covered by the MHB
data and additional 30 years forward with constant
habitat suitabilities, that is, no changes in land cover
or climate were considered. This projection provides
an estimate of the potential current population size

and distribution, without making a prediction as to
future conditions.

To assess the model’s predictive performance, we
calculated, using the function “rcorr.cens” from the
Hmisc R package, Harrell’s c-index (Newson, 2006), a
rank correlation index that generalizes the area under
the receiver-operating-characteristic curve (AUC) index
to nonbinary response variables. It quantifies the proba-
bility that for a given pair of data points the ranking of
predictions will match the ranking of observations. This
measure was used in Briscoe et al. (2021) as a form of
temporal AUC to assess the fit to temporal trends. We
used it here as an index that was applicable to abundance
projections and could be interpreted like the AUC for
occurrence projections.

RESULTS

Sensitivity analysis

Based on the local and global sensitivity analyses
(Appendix S1: Figures S7 and S8), we found that the like-
lihood estimates responded most strongly to variations in
the strength of density dependence 1=b, the adult base
fecundity ϕ0, and the three survival probabilities σ1, σ2,
and σ3. Therefore, we expected that these parameters
would calibrate best under our setup, while the develop-
ment probabilities γ1, γ2 and the emigration probability
e1 would be only weakly informed by our survey data
through the specified likelihood.

Model calibration

To calibrate the model parameters, we ran independent
DEzs-MCMCs on different training data sets: Five chains
were run on the separate folds of the cross validation and
one on the full data set. Differences between the respec-
tive sampled posterior distributions could therefore arise
both because of differing convergence and because of the
data selection. We found that all posteriors converged
roughly in the same area of the parameter space, as the
variance over the five folds was small. Their marginal dis-
tributions took on similar medians and quantiles.

A comparison between the prior and posterior
distributions revealed how the consideration of the MHB
survey data informed the initial parameter estimates
obtained directly from literature data. Notably, the
medians of the marginal distributions for fecundity ϕ0

and the survival probabilities of the first and second stage
σ1 and σ2 shifted significantly, whereas those of the other
parameters remained largely unchanged. The marginal

8 of 19 MALCHOW ET AL.

 19395582, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2966 by U

niversitaetsbibliothek, W
iley O

nline L
ibrary on [17/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



posterior distributions for each parameter and each spa-
tial fold are represented by box plots in Figure 3, and
those for the calibration to the full data set are shown in
Appendix S1: Figure S12. Comparing the HPDIs of the
prior and posterior distributions, we found substantially

narrower posteriors and, thus, reduced uncertainty for
the strength of density dependence 1=b, fecundity ϕ0, and
the survival probabilities of stages one and two σ1 and σ2.
These parameters had already responded strongly in the
sensitivity analysis. No uncertainty reduction or a

Settlement parameter

Dispersion

Emigration probability

Development probability

Development probability

Survival probability

Survival probability

Survival probability

Fecundity

Density dependence

F I GURE 3 Box plots summarize the marginal prior (yellow) and posterior (blue) distribution for each calibration parameter and for all

five spatial folds. The black bar marks the median, the boxes show the interquartile range, and the whiskers extend to the most extreme data

point, which is no farther from the box than 1.5 times its length.
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significant change in point estimate was found for adult
survival σ3 (Appendix S1: Figure S13). This was contrary
to our expectation based on the sensitivity analysis, but
this parameter already had the most informative priors to
begin with. The dispersion parameter of the NB error
model was calibrated to a very large value, yielding a var-
iance that was close to that of a Poisson distribution.
Thus, only slight overdispersion was detected relative to
a Poisson-distributed error.

The convergence of all DEzs-MCMCs was regarded
sufficient, based on the conducted diagnostics. However,
there were considerable differences between the folds
due to the varying number of MHB sites included: The
chains reached multivariate PSRF values of 1.05, 1.02,
1.05, 1.09, and 1.04, respectively, for Folds 1 to 5. Conver-
gence was further assessed using trace plots
(Appendix S1: Figure S9), trace rank plots (Appendix S1:
Figure S10), and PSRF plots (Appendix S1: Figure S11),
which were all satisfactory. No substantial correlations
between the parameters were detected (Appendix S1:
Figure S14).

Model validation

The spatial-block cross-validation was evaluated by calcu-
lating the c-index per spatial fold and for different subsets
of the MHB data (Table 2). First, it was calculated over
all observations, that is, all site-year combinations within
a fold, independently. The overall value of 0.88 indicates
an excellent fit to the validation data. However, the
results were quite variable across folds (see also
Appendix S1: Figure S15), which is likely due to the

differing number and information content of the
included MHB sites. Second, focusing on regional abun-
dance dynamics, we calculated the c-index for the time
series of the total abundance within each fold, consis-
tently yielding excellent values between 0.92 and 0.94
(see also Appendix S1: Figure S16). This confirms that
averaging the abundance over large regions further
increased the accuracy of temporal predictions. Third, we
were interested in the performance of our dSDMs at
those MHB sites that showed the highest variance in red
kite counts since highly fluctuating population sizes are
often of special conservation interest but are usually
harder to predict. To this end, we ranked all MHB sites
by their count variance and computed the c-index over
the top 15% most variable sites. The folds scored signifi-
cantly lower, showing an overall value of 0.66 (see also
Appendix S1: Figure S17), which signified a substantial
drop in performance and indicated fair predictions for
highly variable sites. Again, the different folds showed
highly variable results that ranged from 0.59 to 0.75,
depending on the specific sites they included.

Model projections

The model was used to generate projections to places
not covered by the MHB survey by simulating red kite
abundance over the whole extent of Switzerland. This
made it possible to compare these projections to the
Swiss breeding bird index, which estimates the total
population trend relative to the year 1999 (Knaus et al.,
2022) and, thus, offers an additional source of validation
data. Further, by running the model forward beyond the
MHB data period and under stable environmental con-
ditions, we estimated the size and range of the current
potential population.

Prior and posterior predictions of total red kite abun-
dance during the entire survey period and 30 years
onward, assuming constant habitat suitabilities, are
shown in Figure 4. The posterior predictions showed very
good fit to the Swiss breeding bird index. Comparison of
the prior and posterior predictions of our model gave
more evidence that the calibration was able to gain sub-
stantial information from the survey data: The model fit
was improved considerably and output uncertainty was
reduced. Simulations from the prior showed negative
population trends in most cases, and they had a large
95% credibility interval that included predictions of five
to 2100 BPs in year 2019. The posterior predictions, in
contrast, showed increasing trends throughout and a
much narrower credibility interval. They exhibited a
comparably steep increase in abundance over the past
20 years, in accordance with the strong increases in red

TAB L E 2 Evaluation of spatially blocked cross-

validation (CV).

Spatial
CV fold Spatiotemporal Temporal

High
variance

Fold 1 0.69 (0.05) 0.94 (0.05) 0.67 (0.11)

Fold 2 0.86 (0.02) 0.93 (0.05) 0.59 (0.06)

Fold 3 0.89 (0.02) 0.94 (0.04) 0.65 (0.07)

Fold 4 0.92 (0.01) 0.92 (0.05) 0.75 (0.05)

Fold 5 0.85 (0.04) 0.92 (0.06) 0.73 (0.07)

All folds 0.88 (0.01) 0.94 (0.04) 0.66 (0.03)

Note: Each fold was used as test data for a separate calibration, which used
the remaining folds as training data. Predictions to the test data were
evaluated using the c-index, given per row by its mean and SD in brackets.
The c-index was computed on different subsets of the MHB data, given per

column: The spatiotemporal c-index compares each observation (site-year)
independently, the temporal c-index compares time series of total
abundance per fold, and the last column gives the c-index over sites with the
15% highest variance in local population size.
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kite abundance that were recorded during this time. For-
ward simulation showed that today’s potential equilib-
rium population size amounts to 6400 (95% credibility
interval: 5300–7700) BPs.

Spatial projections were made to the whole country
as three snapshots in time (Figure 5): at the beginning
(1999) and end (2019) of the survey data set and after a
continuation of 20 more years (2019 + 20). These projec-
tions mirrored the rapid expansion of red kite range that
Switzerland has seen in the past two decades. However,
the continuation showed a relatively stable range with
increasing population densities, suggesting that the cur-
rent population has not yet reached the carrying capacity
in all colonized areas. The same maps were created from
prior predictions for comparison (Appendix S1:
Figure S19). They exhibit a contracting range over time,
which deviates substantially from the posterior maps,
again indicating the effective inclusion of information
from the MHB data.

This comparison of prior and posterior distributions
and their respective predictions can shed light on the

main drivers of the presented results. While the prior pre-
dictions exhibited a tendency toward decreasing
populations and contracting ranges, the posterior predic-
tions reproduced the observed patterns closely. Compari-
son of the marginal distributions (Figure 3) revealed that
the main drivers of these disparate predictions appeared
to be fecundity and early survival rates. They responded
most strongly to the information incorporated from the
MHB data via the Bayesian calibration. Taken together,
these three influential parameters suggest that reproduc-
tive success was determined to play a key role in driving
the resulting increases in local density and distribution.
In contrast, changes in habitat suitability over the study
period seem to have had a lesser effect on the resulting
population. This was assessed in a simple analysis of the
sensitivity of simulated abundance to habitat suitability.
We compared the abundance time series from Figure 4
with two counterfactual scenarios in which the habitat
suitabilities of each year were raised or reduced by five
(out of 100) habitat suitability points (Appendix S1:
Figure S18). By the last year of MHB data, 2019, this
intervention had an effect of 9%–10% on total abundance,
which is small compared to the effect of the calibration
(Figure 4). We thus concluded that the population
increases were not predominantly driven by a changing
environment but by transient dynamics of an equilibrium
with much higher population size.

DISCUSSION

Reliable methodology for understanding and predicting a
species’ population and range dynamics will be crucial to
inform decision making in the future. Dynamic, spatially
explicit, process-based distribution models (dSDMs) pro-
vide valuable advances toward improved biodiversity
forecasts (Urban et al., 2016) but are currently underused
due to technical and data challenges and limited guid-
ance for applications (Briscoe et al., 2019; Zurell et al.,
2022). This study contributes to overcoming these chal-
lenges. We demonstrated the practicability of a complete
modeling workflow for dSDMs with a case study of a
conservation-relevant population, the red kite in
Switzerland. This included calibrating a complex stochas-
tic simulation model to heterogeneous empirical data,
interpreting the results, and validating the model by
cross-validation. Thanks to the use of Bayesian inference,
we can integrate direct and indirect knowledge on the
process parameters, account for their uncertainty, and
propagate it to model projections. Our model captures
the Swiss red kite population trends with higher spatial
and temporal predictive accuracy than was achieved with
correlative models in a previous study (details below;

F I GURE 4 Prior (top) and posterior (bottom) simulations of

abundance time series of red kite in Switzerland. The blue line and

band show the median and 95% credibility interval of total number

of predicted breeding pairs (number of BP), with relative values

(with respect to year 1999) on the left-hand-side and absolute

values on the right-hand-side y-axis. The bottom panel shows the

cross-validated posterior predictions together with the breeding

bird index (red circles, relative y-axis only) for comparison. The

dashed vertical lines mark the years for which spatial projections

are depicted in Figure 5. After 2019, the last year of survey data, the

environmental conditions are kept constant.
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Briscoe et al., 2021). The model suggests that the poten-
tial population size under current environmental condi-
tions is much larger than presently realized and that this
may be a result of the population’s history. The workflow
exemplified here can be readily adapted to other species
if an adequate model, prior parameter estimates, and
response data (e.g., occupancy or abundance data) are
available, and it promises to yield improved parameter
estimates and more accurate, validated model
projections.

The process-based dSDM used here to demonstrate
our workflow was built with the individual-based model-
ing platform RangeShiftR (Malchow et al., 2021). It
explicitly considers relevant ecological processes such as
demography and dispersal and includes crucial mecha-
nisms such as density dependence. Therefore, transient
dynamics, which arise when a distribution is not in equi-
librium with its environment, can be reproduced, and

dynamic responses to change can be represented. The
IBM structure was determined based on expert opinion
and the direct (prior) parameterizations of the process
parameters were derived from literature data. IBM
approaches are particularly suited for the direct estima-
tion of their model parameters (e.g., survival probability
or dispersal distance) because they formulate all pro-
cesses from the perspective of the individual (Railsback &
Grimm, 2019), where they can be estimated from data
obtained in observational studies (e.g., mark–recapture).
The prior estimates were updated using the MHB abun-
dance data within a Bayesian inference. Here, IBMs have
the advantage of realistically modeling small local
populations of a few individuals by incorporating demo-
graphic stochasticity, so that the survey data can be used
at a high spatial resolution. Depending on the research
question and the available data, however, a different
model formulation may be more adequate, such as

F I GURE 5 Mean posterior predicted population densities for years 1999 and 2019, and after 20 additional years under constant

conditions (left column) as well as the differences between those years (right column). Arrows indicate north.
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spatially explicit population-based models (implemented
for example in the R package steps; Visintin et al., 2020).
For a successful parameterization using the presented
framework, certain data requirements should be met:
The utilized model should have model parameters whose
priors can be informed by ecological theory and direct
estimates from field and experimental measurements,
and it should generate outputs that can be compared to
observational data via a plausible error model that can be
expressed as a likelihood function.

The successful calibration of parameters in process-
based dSDMs can produce new insights, since they have
a well-defined ecological meaning. Comparing the prior
and posterior distributions of our model, we found that
some parameters in particular, for example, adult fecun-
dity ϕ0, its density dependence 1=b, and the survival
probabilities of juveniles and subadults σ1 and σ2,
responded strongly to the inclusion of additional infor-
mation from survey data. This behavior was predicted
well by the local and global sensitivity analyses. The
detected sensitivity further indicated that the model pro-
jections were responsive to these parameters, thereby
suggesting potential pathways for conservation measures,
for example, highlighting the protection of young individ-
uals and supporting nest success. Pfeiffer and Schaub
(2023) reached the same conclusion and identified the
breeding output and adult survival as the main demo-
graphic drivers when modeling the German red kite pop-
ulation with an integrated population model. Further,
their estimates of stage-wise survival probabilities are in
strong agreement with ours. The prior estimate of 1=b
was corroborated, and those of ϕ0, σ1, and σ2 were
corrected to higher values, while the uncertainty around
all four estimates was reduced. These corrections in
parameter distributions also drive the better fit of the cal-
ibrated model projections to the data as well as the
reduced output uncertainty. Interestingly, it was shown
that the calibration could acquire information even on
the early developmental stages (1 and 2) that were not
recorded in the calibration data, which held abundances
of Stage 3 only. This was facilitated by the ecological
assumptions that were imposed by the model structure,
which discerned the stages by their ability to disperse
(only Stage 1) or reproduce (only Stage 3).

The discrepancies found between prior and posterior
parameter estimates are driven by different factors
(Cailleret et al., 2020). First, there can be a true differ-
ence, for example, if the prior estimates had been
obtained from different study populations. In our case,
the prior fecundity was based on a measurement from a
Swiss subpopulation with a high breeding density, which
may have a lower fecundity than the Swiss average. The
prior survival probabilities were taken from a German

red kite population that showed a slightly negative popu-
lation trend, and the upward correction seemed to better
match the increasing Swiss population. Red kite in
Switzerland benefit from public feeding (Cereghetti et al.,
2019), and many subadult individuals change from
migratory to resident behavior, which can also increase
survival. Second, an important source of deviations
between empirical and calibrated parameter estimates is
model error. Our IBM captured only a subset of the mul-
tiple eco-evolutionary processes that underlie the
observed abundance patterns. Therefore, the calibrated
parameters will account for missing processes to some
extent. This highlights the need for further development
of dSDMs to include more mechanisms and, thus, to fit
observed data more closely. It further emphasizes the
importance of effective integration of direct and inverse
calibration to estimate parameter values and their uncer-
tainties, since projections and derived management deci-
sions can be highly sensitive to the final
parameterization.

The validation of model predictions to assess model
performance is common practice in the application of
cSDMs (Sillero et al., 2021) but is often missing with
dSDMs. With the presented workflow, we successfully
applied spatial-block cross-validation to a dSDM by cali-
brating the model to each of five spatially contiguous
regions within the study area. By spatially blocking the
holdout data, we reduced the amount of spatial autocor-
relation between the training and testing data, which is
often present in abundance data and only insufficiently
reduced by other cross-validation schemes such as ran-
domized leave-p-out. This yields a more realistic assess-
ment of predictive performance for interpolation. For
other types of data, different blocking techniques may be
more adequate (Roberts et al., 2017). The folds were
selected carefully in such a way that the same range of
environmental conditions was represented in each one,
so that model evaluation did not involve extrapolation to
new environmental conditions. Performing a cross-
validation is usually computationally expensive, as the
calibration needs to be repeated for each set of holdout
data. Therefore, a suitable validation method must be
chosen carefully. Alternatives include approximation to
leave-one-out validation by Watanabe–Akaike informa-
tion criterion (Vehtari et al., 2017).

The full red kite dSDM was evaluated based on its
cross-validated abundance predictions using Harrell’s
c-index as a measure of predictive performance, which
indicated excellent predictive accuracy (c-index: 0.88). In
sites with highly fluctuating abundances, performance
dropped considerably and only yielded fair predictions
(c-index: 0.66). A similar analysis was conducted by Briscoe
et al. (2021), who compared the accuracy of correlative
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SDMs and dynamic occupancy models (Kéry et al., 2013)
that were fitted to the MHB data of 69 Swiss birds, includ-
ing the red kite. They found that the predictive ability of
occupancy was high for all examined model types when
assessed across all sites (mean AUC >0.8) but much lower
when specifically testing only sites that showed occupancy
change (mean AUC 0.64–0.71). The AUC metric is based
on predictions of occupancy only and therefore generally
scores above the c-index, which ranks abundances. In col-
lapsing our abundance predictions to occupancy and com-
paring them to Briscoe et al. (2021) in terms of the AUC,
our calibrated IBM surpasses the mean of their red kite
SDMs, across both all sites (mean AUC of 0.91 vs. 0.85)
and occupancy-switching sites only (0.80 vs. 0.67). Espe-
cially in range-shifting populations, such as the red kite in
Switzerland, process-explicit dSDMs can outperform correl-
ative approaches because they make no equilibrium
assumption. Our model also showed clear advantages over
the dynamic occupancy models in Briscoe et al. (2021),
likely due to the explicit consideration of spatially explicit
processes such as density dependence in population
dynamics and dispersal.

The calibrated model was run forward under current
environmental conditions in order to explore the poten-
tial population size and distribution. In the same way, it
could be used to assess population trends under certain
scenarios such as conservation measures involving habi-
tat improvements or regulation of demographic rates. For
predictions of future population dynamics, however,
expected changes in land use and climate must be taken
into account. In our dSDM, these variables are only con-
sidered through the cSDM-derived, scalar habitat suit-
ability and thus cannot impact demographic processes
directly and independently, as ecological theory suggests.
More complexity and mechanistic understanding could
be incorporated by substituting the habitat model with
direct relationships of species traits like demographic
rates with environmental variables. Such a
demographic range model is adequate for predictions
under climate change (Malchow, Hartig, et al., 2023;
Schurr et al., 2012). As a further limitation, the habitat
map that underlies our model consists of a cSDM fitted to
recent atlas data. It is possible that suitable but not yet
occupied parts of the red kite niche were missed in these
data, so the future range would be underestimated by the
projections. This limitation can be circumvented by using
a habitat model that does not rely on the equilibrium
assumption, for example, a rule-based model derived
from knowledge about the species’ habitat requirements
or an eco-physiological SDM (Kearney & Porter, 2009).
Moreover, the observed increases in range and density
might have been partially fueled by individuals that had
not been recruited in the study region but immigrated

from surrounding high-density populations that were not
considered in the model. More potential for model
improvement lies in implementing additional processes
such as mating systems, species interactions, or genetic
and behavioral adaptation. Their successful parameteri-
zation, however, will require adequate data.

The inverse calibration of dSDMs from observational
data is also possible with other methods, like pattern-
oriented modeling (Grimm et al., 2005; Mortensen et al.,
2021) or approximate Bayesian computation (Beaumont,
2010; Hauenstein et al., 2019), the latter of which has
already been demonstrated in the RangeShifter model
(Dominguez Almela et al., 2020). Independently of the
chosen calibration method, the accurate parameteriza-
tion of dynamic and mechanistic SDMs will remain a
challenge until the paucity of high-quality ecological and
monitoring data is alleviated (Kissling et al., 2018; Oliver
et al., 2012). Which parameters of a dSDM can be suc-
cessfully calibrated depends on the available calibration
data. Here, the type of data collected within monitoring
programs plays an important role as all model output
quantities can principally be used for inverse parameteri-
zation. In our case study, for example, the abundances of
juveniles and subadults were output from the IBM but
could not be used for calibration because age classes are
not distinguished in MHB surveys. Generally, the consid-
erable uncertainties in parameter estimates caused by
data limitations translate to large credibility intervals in
model projections, reducing the utility for conservation
applications. Here, it is a clear advantage of the Bayesian
framework that sources of outcome uncertainty are
explicitly quantified and can thus be addressed, for exam-
ple, in targeted monitoring programs.

In conclusion, this case study shows how an
individual-based dSDM can be built with RangeShiftR,
calibrated using Bayesian inference, and validated by
cross-validation. We demonstrated how the inclusion of
monitoring data refined parameter estimates and greatly
improved model fit and prediction accuracy, thereby
offering improved insights into underlying mechanisms.
Well-calibrated and validated process-based models offer
compelling advantages over the currently most common
static models. They are able to inform science-based man-
agement decisions and the design of proactive conserva-
tion measures (Zurell et al., 2022). Future progress in this
field should be directed toward developing more flexible
and accessible modeling tools, assessing their data
requirements for effective parameterization, and validat-
ing them against independent targets.
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