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Abstract

Ecological networks describe the interactions between different species,

informing us how they rely on one another for food, pollination, and survival.

If a species in an ecosystem is under threat of extinction, it can affect other spe-

cies in the system and possibly result in their secondary extinction as well.

Understanding how (primary) extinctions cause secondary extinctions on

ecological networks has been considered previously using computational

methods. However, these methods do not provide an explanation for the proper-

ties that make ecological networks robust, and they can be computationally

expensive. We develop a new analytic model for predicting secondary extinc-

tions that requires no stochastic simulation. Our model can predict secondary

extinctions when primary extinctions occur at random or due to some targeting

based on the number of links per species or risk of extinction, and can be

applied to an ecological network of any number of layers. Using our model, we

consider how false negatives and positives in network data affect predictions for

network robustness. We have also extended the model to predict scenarios in

which secondary extinctions occur once species lose a certain percentage of

interaction strength, and to model the loss of interactions as opposed to just

species extinction. From our model, it is possible to derive new analytic results

such as how ecological networks are most robust when secondary species are of

equal degree. Additionally, we show that both specialization and generalization

in the distribution of interaction strength can be advantageous for network

robustness, depending upon the extinction scenario being considered.
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INTRODUCTION

No species exists in isolation, depending upon interactions
with other species to feed, reproduce or maintain a stable

population (Cohen, 1978; Haeckel, 1866). Modeling the
interactions between species is therefore of great
importance in ecology, and one approach to this prob-
lem is to model interactions as an ecological network
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(Bersier, 2007; Ings & Hawes, 2018). Ecosystems are
increasingly threatened by the effects of climate change
(Bellard et al., 2012; Dawson et al., 2011), which can
cause sudden and widespread extinction events.
Therefore, it is useful to model extinctions on ecologi-
cal networks to understand the possible knock-on
effects of species extinctions, as this may help to iden-
tify methods for conserving or reinforcing ecosystems
in the future (Forup et al., 2008; Jongman, 1995;
Tylianakis et al., 2010).

Species extinctions on ecological networks have been
extensively studied in the past 20 years, with simplistic
topological models providing predictions for the impact
of extinctions under scenarios including extinctions that
occur at random or with some ordering (Memmott
et al., 2004), extinctions on networks made up of numer-
ous trophic levels (Pocock et al., 2012), and extinctions
that occur due to a loss of interaction strength over a cer-
tain threshold (Schleuning et al., 2016).

The models used are not the only possible approach
to understanding the robustness of ecological networks.
Other models consider the size of the largest component
in the interaction network (Montoya et al., 2006; Solé &
Montoya, 2001), or take a more dynamical approach as
is the case with Bayesian network models (Aguilera
et al., 2011; Ramazi et al., 2021). Here we restrict
ourselves to what we refer to as simplistic topological
network models, which originate from (Memmott
et al., 2004). In these models, we are concerned with the
point at which a given species goes extinct due to losing
either a certain number of neighbors or a certain amount
of interaction strength.

Previous work on simplistic topological network models
has been largely computational, where extinctions are
simulated to obtain predictions. Limited analytic work has
been done to predict the robustness of ecological networks,
which are either maximally or minimally nested (Burgos
et al., 2007), but there is no existing analytic framework
that can predict the robustness of any given simple eco-
logical network. In the following, we develop such a
model, which improves upon computational methods
by providing an insight into the properties that make
ecological networks robust, and by cutting computa-
tional costs.

We start by considering the same scenario put
forward by Memmott et al. (2004), where a bipartite
mutualistic network (such as a plant–pollinator network)
undergoes extinctions on one trophic level, with species
on the other trophic level experiencing secondary extinc-
tions if they lose some or all of their neighbors. We show
that, for random primary extinctions and a set quantity
of interactions, ecological networks are maximally
robust when secondary species have equally distributed

interactions. Secondary extinctions may also be
predicted for targeted primary extinctions, and second-
ary extinctions are predictable on networks with more
than two trophic layers (Pocock et al., 2012).
Additionally, our model may also be used to predict
the effects of errors in network data, where interac-
tions are erroneously included or excluded.

The model is then developed further, taking into
account the variable interaction strengths of neighboring
species, where a species will go extinct if it loses a certain
amount of interaction strength, as considered by
Schleuning et al. (2016). For these scenarios, we show
that if secondary species’ interaction strength is maxi-
mally specialized then network robustness is constant
regardless of network degree distribution or extinction
sensitivity. If interaction strength is maximally general-
ized, networks with a high degree of secondary species
have a robustness that is solely dependent upon extinc-
tion sensitivity. As a result, high specialization makes a
network more robust if it is highly sensitive to interaction
loss, and high generalization is better for robustness if
interaction loss sensitivity is low. We also consider the
scenario in which species go extinct gradually, modeled
by the loss of interaction strength as opposed to entire
species.

The wide range of applications and novel results
presented here demonstrate the potential benefits of
approaching the problem of predicting species extinctions
on ecological networks using a combinatoric framework.
As we argue in the following, this is an approach that
can cut down on computational expense for predicting
extinctions and provide new insights into the structures
that make an ecological network robust, with several
possible avenues for future development.

INTRODUCING THE ANALYTIC
FRAMEWORK

In the model of Memmott et al. (2004), species in one
trophic level (e.g., pollinators) undergo extinctions,
and this impacts species in an adjacent, secondary tro-
phic level (e.g., plants). If species in the secondary level
lose all of their neighbors, they suffer a secondary
extinction. Primary extinctions may occur at random
or according to some ordering, such as highest to low-
est degree, where the degree of a species is the number
of interactions/links/edges it has. We can plot the pro-
portion of secondary species that survive against the
proportion of primary extinctions to visualize how
robust a given ecological network is against extinction,
and an example of such a “robustness curve” is shown
in Figure 1.
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The area under the robustness curve in Figure 1b
may be calculated to give a single metric for ecological
network robustness, and this is given by (Burgos
et al., 2007):

R¼ 1
Np + 1

XNp

φ¼0

Pr survivejφð Þ, ð1Þ

where Np is the total number of primary species, φ is the
number of primary species that have become extinct
at a given point, and Pr survivejφð Þ is the average
probability of a randomly chosen secondary species
surviving after some φ primary species have been
removed. Note that we divide the sum of survival
probabilities by Np + 1 because we are averaging
Pr survivejφð Þ over φ values from 0 to Np, and so there
are Np + 1 different values of φ in total. Previously,
calculations of the robustness curve and the robustness
value R have been done computationally, with some
analytic results being derived for extreme cases (Burgos
et al., 2007). As we show in the following, it is, in fact,
possible to analytically predict the robustness curve of
any given simple ecological network for a variety of
extinction scenarios.

The following model relies heavily upon binomial
coefficients, which express the number of combinations
of k elements that may be chosen from some population

of size n. The binomial coefficient
n
k

� �
may be calcu-

lated as:

n
k

� �
¼ n!
k! n− kð Þ! , ð2Þ

under the condition that 0≤ k≤n. Note that ! refers
to the factorial function, where for some
x, x!¼ x × x− 1ð Þ× x− 2ð Þ×…×2× 1.

Let us consider some species A in the secondary
trophic level, which initially has degree kA and therefore
kA unique neighbors in the primary level. If species
in the primary level go extinct at random, we want
to know the probability that species A has degree
kA − j (i.e., j extinct neighbors) after some φ number of
primary species have gone extinct. If there are Np pri-

mary species, then there are
Np

φ

� �
different possible

combinations of primary species extinctions. We then
need to find how many of those combinations include j

neighbors of A. There are
kA
j

� �
possible combinations

for removing j neighbors of A, and therefore there are
Np − kA
φ− j

� �
possible combinations for removing φ− j spe-

cies that are not neighbors of A, so long as φ≥ j.

Multiplying
kA
j

� �
by

Np− kA
φ− j

� �
gives us the total

number of combinations of length φ, which include j

neighbors of A, and so we may write the probability of A

having degree kA − j once φ primary species are

extinct as:

F I GURE 1 (a) An example plant–pollinator network and (b) its associated robustness curve. For this network, pollinators are treated as

primary species and plants as secondary species. Random primary extinctions are simulated repeatedly and the proportion of surviving

secondary species is recorded to generate the robustness curve. Illustrations used in (a) are all available in the public domain under a

CC0 license.
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Pr k0A ¼ kA − jjφ� �¼
kA
j

� �
Np − kA
φ− j

� �
Np

φ

� � ifφ≥ j,

0 otherwise,

8>>>><
>>>>:

ð3Þ

where k0A refers to A’s actual degree value once φ primary

species have gone extinct. This is the hypergeometric

distribution, which describes a process of sampling

without replacement where each sample may pass

(a neighbor of A is removed) or fail (a nonneighboring

primary species is removed). If we specify that species

A goes extinct once its degree is k0A ¼ kA − ik or below

(i.e., it has lost at least ik neighbors), then the disconnec-

tion probability for secondary species A once some φ pri-

mary species are extinct is:

Pr A extinctjφð Þ¼
XkA
j¼ik

Pr k0A ¼ kA − jjφ� �
, ð4Þ

Because extinction probability is only dependent
upon the initial degree of a given secondary species, the
total number of primary species in the network, and
the number of primary species removed, we may extend
this to all secondary species of initial degree k.
Consequently, the average secondary extinction probabil-
ity over the entire network is:

Pr extinctjφð Þ¼
X
k¼0

p kð Þ
XkA
j¼ik

Pr k0 ¼ k− jjφð Þ, ð5Þ

where p kð Þ is the probability of some randomly chosen
secondary species having an initial degree of k. Given that
Pr survivejφð Þ is simply 1−Pr extinctjφð Þ, we can rewrite
the expression for robustness R from Equation (1) as:

R¼ 1−
1

Np + 1

XNp

φ¼0

Pr extinctjφð Þ: ð6Þ

Here we note that this analytic model is consi-
derably computationally cheaper than brute force simula-
tion. With an efficient implementation, calculating
Pr extinctjφð Þ analytically takes O pð Þ time, where p is the
number of unique nonzero entries in the secondary
species degree distribution. By contrast, estimating
Pr extinctjφð Þ computationally once takes O N sð Þ time,
where N s is the number of secondary species and N s ≥ p.
In practice, it is often necessary to run several thousand sim-
ulations to produce an accurate estimate of Pr extinctjφð Þ,
and so our analytic approach is substantially computa-
tionally cheaper than the brute force method.

In Figure 2a, we demonstrate the results of our model
by comparing the analytically predicted robustness
curve for an ecological network against the average
curve obtained computationally when all neighbors
must be removed for extinction to occur (i.e., ik ¼ k).
The ecological data used are from a study of

F I GURE 2 (a) Analytically predicted and computationally simulated robustness curves of a real-world network from a study by Kato

(2000) and (b) the absolute curve divergence between the analytic and simulated curve as computational simulations increase, plotted on a

log–log scale.
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plant–pollinator networks in Japan by Kato (2000).
We can see that the computationally obtained curve
converges to our predicted curve as the number of
simulations increases, indicating that our method accu-
rately predicts the average robustness curve.

We also compare the absolute curve divergence
between predicted and simulated curves for an increasing
number of simulations in Figure 2b. The absolute curve
divergence D is given by:

D¼
PNp

φ¼0 jPr survivejφð Þpredict −Pr survivejφð Þsim j
Np

, ð7Þ

where Pr survivejφð Þpredict and Pr survivejφð Þsim are the
predicted and average simulated secondary species
survival probabilities, respectively. In Figure 2 we can
see that the computationally generated result con-
verges toward our prediction in the limit of a large
number of simulations, indicating that our analytic
model is accurate.

We implemented our model in Python 3.9, with our
code archived in Jones (2023). Our code may be used to
replicate our results throughout this paper, and can form
a basis for implementing our model and its extensions
in other contexts. The predictions presented through-
out this paper rely heavily upon the hypergeometric
distribution, which may be easily calculated in Python
using the “scipy.stats.hypergeom” function. For
example, to calculate Pr A extinctjφð Þ from Equation (4),
we can run:

probAExtinct = 1 - scipy.stats.hypergeom.cdf
(threshold-1, noPrimary, degreeA,

removedSpecies)

where threshold corresponds to iA, noPrimary corre-
sponds to Np, degreeA corresponds to kA and
removedSpecies corresponds to φ. We used scipy.

stats.hypergeom.cdf to calculate the cumulative
distribution of the hypergeometric distribution, which is
the same as taking the sum of Pr k0A ¼ kA − jjφ� �

over
values of j. An equivalent calculation may be made in
R using the “phyper” function to give

probAExtinct = 1 - phyper(threshold-1,
removedSpecies, noPrimary -
removedSpecies, degreeA)

DEGREE EQUALITY MAXIMIZES
ROBUSTNESS

Using the analytic model presented in the preceding sec-
tion, we can prove that, when a secondary species must

lose all of its neighbors to go extinct, an ecological net-
work of fixed average degree is most robust when all sec-
ondary species are as close together in degree values as
possible. When the average degree kh i is an integer, this
entails a degree distribution of:

p kð Þ¼ 1 if k¼ kh i,
0 otherwise,

�
ð8Þ

and if kh i is not an integer, then the robustness maximizing
distribution is:

p kð Þ¼
1+ kh i− kh id e if k¼ kh id e,
1− kh i+ kh ib cif k¼ kh ib c,
0 otherwise,

8><
>: ð9Þ

where kh id e and kh ib c are the average degree rounded up
and rounded down, respectively, to the nearest integer.

To prove this, we may first show how robustness R is
solely dependent upon the degree values of secondary
species when secondary species only go extinct upon the
loss of all of their neighbors. For a given secondary spe-
cies A of degree kA, its average extinction probability
throughout the process of random primary species extinc-
tions is given by:

Pr Aextinctjφð Þφ ¼
1

Np + 1

XNp

φ¼0

kA
kA

� �
Np − kA
φ− kA

� �
Np

φ

� � if φ≥ kA,

0 otherwise,

0
BBBB@

¼ 1
Np + 1

XNp

φ¼kA

Np − kA
φ− kA

� �
Np

φ

� � ,

¼ 1
Np + 1

XNp

φ¼kA

φ! Np − kA
� �

!

Np! φ− kAð Þ! :

ð10Þ

Multiplying Equation (10) by kA!
kA!

gives:

Pr Aextinctjφð Þφ ¼
kA! Np− kA
� �

!

Np! Np + 1
� � XNp

φ¼kA

φ!
kA! φ− kAð Þ! ,

¼ 1
Np + 1

1

Np

kA

� �XNp

φ¼kA

φ
kA

� �
,

¼
Np + 1
kA + 1

� �

Np + 1
� � Np

kA

� � ,

¼ 1
kA + 1

:

ð11Þ
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Scaling this result up across the entire network, we
can calculate robustness R as:

R¼ 1−
X
k¼0

p kð Þ 1
k+1

,

¼
X
k¼0

p kð Þ k
k+1

:

ð12Þ

Therefore, the robustness of an ecological network is
solely dependent upon the degree values of secondary
species when secondary species only go extinct upon the
loss of all of their neighbors.

To prove that degree equality among secondary spe-
cies maximizes robustness, let us consider two secondary
species A and B that we rewire by removing an edge from
B and adding one to A. How would rewiring an edge like
this affect the network’s robustness? The change in
robustness ΔR is given by:

ΔR¼ 1
Ns

kA + 1
kA + 2

+
kB − 1
kB

−
kA

kA + 1
−

kB
kB + 1

� �
,

¼ 1
N s

kA + 1ð Þ2 − kA kA + 2ð Þ
kA + 1ð Þ kA + 2ð Þ +

kB − 1ð Þ kB + 1ð Þ− k2B
kB kB + 1ð Þ

 !
,

¼ 1
N s

1
kA + 1ð Þ kA + 2ð Þ −

1
kB kB + 1ð Þ

� �
,

ð13Þ

where N s is the number of secondary species in the
network. Therefore, ΔR>0 when kA + 1< kB, ΔR¼ 0
when kA + 1¼ kB and ΔR<0 when kA + 1> kB. This
entails the fact that robustness always increases or stays
the same if species A is of a lower initial degree than spe-
cies B and an edge is rewired from B to A. Applying this
process repeatedly to a network until robustness cannot
be improved further gives either the degree distribution
described in Equation (8) for integer kh i, or the distribu-
tion of Equation (9) when kh i is not an integer. In other
words, the network is most robust when secondary spe-
cies are as equal in degree values as possible.

This result tells us the structural properties that make
secondary species in ecological networks robust against
random primary species extinctions, namely equally dis-
tributed interactions among secondary species. Previous
research has indicated this before (Burgos et al., 2007).
However, this was not conclusively proven, and in the
work of Burgos et al. (2007) robustness was related to
nestedness as opposed to secondary species degree distri-
bution. As previously noted, network nestedness is
dependent upon how primary species interact with sec-
ondary species, but our results demonstrate the fact that
robustness against random extinctions is determined by

the degree distribution of secondary species alone.
Therefore, for random primary extinctions, nestedness is
not necessarily an indicator of secondary species
robustness.

To illustrate how robustness increases as secondary
species become equal in degree when edges are rewired
from high- to low-degree secondary species, we provide a
series of example networks in Figure 3, each with equal
numbers of interactions and primary and secondary spe-
cies, but different robustness values.

We can see that the most “unequal” network (i) has
the lowest robustness, and the network where all second-
ary species are of equal degree (iv) has the highest robust-
ness. Additionally, networks (ii) and (iii) have the same
secondary species degree distributions and robustness
values as one another, as the only difference between
them is the degree distribution of primary species. The
difference in primary species degree distribution means
that they are not considered to have the same nestedness
as one another, but they are equally robust, demonstrat-
ing the fact that nestedness and robustness are not neces-
sarily related in the context of random extinctions.

TARGETED SPECIES EXTINCTIONS

The model demonstrated in the preceding sections only
predicts robustness when primary species are removed at
random, but it is also possible to adjust the model to pre-
dict robustness when primary species are removed in
descending or ascending degree order. This means that
species with many links (descending order) or few links
(ascending order) go extinct first. In these scenarios, pri-
mary species are effectively sorted into some n different
groups based on degree value. All species within a group
are removed in a random order before moving on to the
next group, which is higher or lower in degree value,
depending on the scenario. If we consider some second-
ary species A, it will have some kA,l neighbors in a given
primary species group where all primary species have
degree l. As before, we set some threshold number ik of
neighboring species that must be lost before a given sec-
ondary species of degree k goes extinct. We can then say
that the secondary species will go extinct as we remove
primary species from some group d if it satisfies the con-
ditions

Pn
l¼dkA,l ≥ ik and

Pn
l¼d+1kA,l < ik for descending

degree order removal, and
Pd

l¼0kA,l ≥ ik andPd− 1
l¼0 kA,l < ik for ascending degree order removal. We

can therefore write the probability of some secondary
species A going extinct when primary species are
removed in descending degree order, given that
species are being removed from group d and some φd

species have been removed from group d, as:

6 of 18 JONES ET AL.
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Pr A extinct,djφdð Þ

¼

0
if
Pn

l¼dkA, l < ik
or φd < jA,d,

kA,d
jA,d

� �
Nd− kA,d
φd− jA,d

� �
Nd

φd

� �
if
Pn

l¼dkA, l ≥ ik
and

Pn
l¼d+1kA, l < ik

and φd ≥ jA,d,

1 if
Pn

l¼d+1kA, l ≥ ik,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ

where Nd is the number of primary species in group d
and jA,d ¼ ik −

Pn
l¼d+1kA,l. Similarly, for primary species

removal in ascending degree order we have:

Pr A extinct,djφdð Þ

¼

0
if
Pd

l¼0kA, l < ik
or φd < jA,d,

kA,d
jA,d

� �
Nd− kA,d
φd− jA,d

� �
Nd

φd

� �
if
Pd

l¼0kA, l ≥ ik

and
Pd− 1

l¼0 kl < ik
and φd ≥ jd,

1 if
Pd− 1

l¼0 kA, l ≥ ik,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15Þ

where jA,d ¼ ik −
Pd− 1

l¼0 kA,l. The extinction probabilities
Pr Aextinctjd,φdð Þ from Equations (14) and (15) can be
averaged over all secondary species to give:

Pr extinctjφð Þ¼ 1
Ns

X
A

Xn
d¼0

Pr Aextinctjd,φdð Þ, ð16Þ

which is the average extinction probability for any
number of removed primary species. Therefore, we can
predict the robustness curves for descending and ascending
degree removal of primary species, and an example is given
in Figure 4.

As before, our analytic model can successfully
predict the average extinction probabilities for second-
ary species as primary species are removed. The
scenarios in which primary species are removed in
descending and ascending degree order have been
referred to as the “worst” and “best” case scenarios,
respectively. However, our analytic model suggests
that from the perspective of robustness, this may
not exactly be the case. Under descending degree
order removal, a secondary species’ extinction proba-
bility only depends upon how many lowest-degree
neighbors it has, and for ascending degree order
removal it depends upon the number of highest-degree
neighbors. In Figure 5, we provide an example ecosystem
for which descending degree order removal gives
higher network robustness than ascending degree
removal.

While this is a specifically constructed example, it
demonstrates that finding the true worst- or best-case
scenario for secondary extinctions is not necessarily a
case of removing primary species in descending or
ascending degree order. As such, a possible future line
of inquiry is to try to establish the true worst- and
best-case scenarios for species extinction on any given
network.

F I GURE 3 (a) Example networks with different secondary species degree distributions and (b) network robustness curves for the four

example networks. Network (1) exhibits the lowest robustness, networks (2) and (3) have the same robustness even though they have

different primary species degree distributions, and network (4) has the highest robustness, where all secondary species have the same degree.

Illustrations used in (a) are all available in the public domain under a CC0 license.
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It should also be noted that according to our model,
the probability of a secondary species going extinct is
only dependent upon the number of primary species it
interacts within one degree group. For descending extinc-
tions, a secondary species’ extinction is only dependent
upon the number of primary species in its lowest-degree
group of neighbors, and for ascending extinctions it solely
depends on the number of neighbors in its highest-degree
group. The number of distinct groups does not necessar-
ily alter a network’s robustness, although having more
distinct groups of primary species results in more predict-
able extinctions, with the most extreme case occurring
when each primary species is in a group by itself, making
extinctions perfectly predictable.

Thus far in this section we have considered species
extinctions that are targeted based on degree value, but
this is only one possible extinction ordering. Recent
research has examined extinction scenarios in which
species are lost according to their extinction risk as
assessed by the International Union for Conservation of
Nature (IUCN) Red List (Lamperty & Brosi, 2022). Species
are ranked in the Red List from Critically Endangered to
Least Concern, and in work by Lamperty and Brosi (2022),
frugivore species in a seed-dispersal network are removed
from highest to lowest extinction risk. Because species
only belong to one of these extinction risk categories, it is
necessary to simulate extinctions from each risk category
in descending risk order, with the order of extinctions
within each group randomized. This framework fits well
with our targeted species extinction model.

Using data from (Bello et al., 2017), we can replicate
the results of (Lamperty & Brosi, 2022), predicting the
survival of plant species in a seed-dispersal network as
frugivore species are lost in descending extinction risk
order. We calculate extinction probability using:

Pr A extinctjφð Þ

¼

0
if
Pn

l¼dkA, l < ik
or φd < jA,d,

kA,d
jA,d

� �
Nd − kA,d
φd − jA,d

� �
Nd

φd

� �
if
Pn

l¼dkA, l ≥ ik
and

Pn
l¼d+1kA, l < ik

and φd ≥ jA,d,

1 if
Pn

l¼d+1kA, l ≥ ik,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

which is the same as Equation (14), except instead of
our primary species groups being organized by degree
value, they are now organized by extinction risk. In
Figure 6, we show predicted plant species survival prob-
abilities as frugivore species are removed in descending
extinction risk order, with plant species going extinct
once they have lost all of their frugivore neighbors.

This demonstrates the fact that our framework for
targeted species extinctions may be extended to any
ordering of primary species loss where primary species
are sorted into groups that become extinct in some order,
but extinction within groups occurs at random.

MULTILAYER ECOSYSTEMS

So far, we have only demonstrated our model for bipar-
tite systems, that is, those that include only two groups
that interact with one another. However, real-world eco-
systems can exist on several distinct layers, for example,
predators may feed on pollinators, which in turn polli-
nate plants. Another extension for our model is to predict
species extinction in a group of species not directly adja-
cent to the group undergoing primary extinction. This is
predictable analytically, but only for the scenario in which
a species must lose all of its neighbors to go extinct.

Scenarios such as this have previously been consid-
ered by (Pocock et al., 2012), using computational
methods. Here we construct an example network to dem-
onstrate robustness predictions on multilayer networks.
Let us consider a system of plants, pollinators and preda-
tors, where predators feed on pollinators, who in turn
feed on plants. We want to know the probability of a
predator going extinct after a certain number of plant
extinctions. For some predator species A, the species will
go extinct if all of the pollinator species it is connected to
become extinct, which only occurs once all of their plant

F I GURE 4 Analytically predicted robustness curves for

targeted primary species removal. Predictions are made on the

plant–pollinator network from a study by Kato (2000). The blue

curve is for random removal, included as a point of comparison.

The green curve is for removal of primary species in ascending

degree order (lowest degree first) and the orange curve is for removal

of primary species in descending degree order (highest degree first).
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species neighbors become extinct. Therefore, the extinc-
tion probability of predator species A is simply dependent
upon the uA initial number of unique plant species to
which it is connected via its pollinator species neighbors,
before any extinctions occur. Therefore, we can treat the
predator species in this system as our secondary species
and the plant species as our primary species.

Similar to Equation (3), the extinction probability for
a secondary species A once some φ number of primary
species have been removed is:

Pr u0A ¼ 0jφ� �¼
Np− uA
φ− uA

� �
Np

φ

� � if φ≥ uA,

0 otherwise,

8>>>><
>>>>:

ð18Þ

As before, we can average Equation (18) over p uð Þ,
the distribution of secondary species connected to u
unique primary species to predict secondary extinctions
as primary species are removed to give:

Pr extinctjφð Þ¼
X
u¼0

p uð ÞPr u0 ¼ 0jφð Þ: ð19Þ

This extinction probability may then be used to gener-
ate analytically predicted robustness curves such as the
one given in Figure 7.

While this expands the scope of our analytic model
beyond simply two-layer ecosystems, it is important to
note that thus far we can only model extinctions on mul-
tilayer systems if species go extinct after losing all of their
neighbors. Therefore, we cannot consider as many differ-
ent extinction scenarios on multilayer networks as we
can for bipartite networks.

In this scenario, the survival of a secondary species is
only dependent upon the number of unique primary spe-
cies to which it is connected via intermediary species.
Theoretically, this may be scaled up to a network of arbi-
trarily many layers, and so secondary species will be sep-
arated from primary species by an arbitrary number of
intermediary species. In this case, it may be useful to
determine how the inclusion of additional layers affects

F I GURE 6 Analytically predicted robustness curve of a

real-world seed-dispersal network, where primary frugivore species

go extinct according to their IUCN extinction risk. This replicates

results from Lamperty & Brosi (2022) using data from Bello

et al. (2017).

F I GURE 5 (a) Example ecological network and (b) targeted removal robustness curves. Removing low-degree primary species

(pollinators) first gives a lower robustness than removing high-degree primary species. Illustrations used in (a) are all available in the public

domain under a CC0 license.
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robustness, especially if some layers have few interactions
and act as bottlenecks in the network.

FALSE NEGATIVES AND POSITIVES
IN NETWORK DATA

Beyond simply predicting robustness, we may also be
interested in how predictions of robustness are affected
by errors in network data, as ecological data can be error
prone (de Aguiar et al., 2019; Kangas et al., 2018). For
example, networks may vary across environmental gradi-
ents (Pellissier et al., 2018) or may constitute metawebs
inferred from proxies (Maiorano et al., 2020;
Morales-Castilla et al., 2015). One may be interested in
how the robustness of networks changes as true edges
are removed (false negatives) or false edges are added in
(false positives). In the simplest case, let us consider the
random removal and addition of edges. Because robust-
ness against random primary species removal only
depends upon the degree distribution of secondary spe-
cies, we can analytically predict how robustness will
change as edges are randomly removed or added by
modeling the changes to the secondary degree
distribution.

For random edge removal and addition, we can pre-
dict changes to the secondary species degree distribution
using the hypergeometric distribution. For modeling false
negatives, let us consider some species A with initial
degree kA before any edges are removed. To determine

the probability that A has degree value k0A ¼ kA − j once
some φn edges have been removed from the network, we
use a hypergeometric distribution of a similar form to that
shown in Equation (3), except we are now choosing from
the total number of edges E that are initially in the
network. The probability that A has degree k0A ¼ kA − j is
given by

Pr k0A ¼ kA − jjφn

� �¼
kA
j

� �
E− kA
φn − j

� �
E
φn

� � if φn ≥ j,

0 otherwise:

8>>>><
>>>>:

ð20Þ

Equation (20) may then be scaled up across the
entire network to update the secondary degree
distribution. Values in the updated degree distribution
are given by:

p k0ð Þn ¼
1
N s

X
A

Pr k0A ¼ kA − jjφn

� �
: ð21Þ

For false positives, we can again use the
hypergeometric distribution to predict changes to the net-
work’s secondary degree distribution, but we now con-
sider the probability of adding edges to some species A.
For species A with initial degree kA before any edges are
added, the number of potential edges that may be added
is Np − kA, assuming that there are only single interactions

F I GURE 7 (a) Example of a three-layer network of plants (primary species), pollinators, and predators (secondary species), and

(b) the associated analytically predicted robustness curve. Illustrations used in (a) are all available in the public domain under a

CC0 license.
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between primary and secondary species. Additionally, there
are NsNp −E possible edges that do not exist in the ini-
tial network and could potentially be added. Therefore,
the probability that species A has degree value k0A ¼
kA + j after some φp false-positive edges have been
added is:

Pr k0A ¼ kA + jjφp

� �

¼

Np − kA
j

� �
NsNp −E−NP + kA

φp − j

� �
NsNp−E

φn

� � if φp ≥ j,

0 otherwise:

8>>>><
>>>>:

ð22Þ

Similar to before, we can average Equation (22)
across all species to update the degree distribution
to give

p k0ð Þp¼
1
Ns

X
A

Pr k0A ¼ kA + jjφp

� �
: ð23Þ

While Equations (21) and (23) give us updated degree
distributions for the inclusion of false negatives and posi-
tives, respectively, they only tell us how false negatives
and positives affect a network separately. What if we
wish to model a network that includes both false nega-
tives and positives?

To model false negatives and positives occurring on
the same network, we can consider the convolution of
Equations (20) and (22). This can ultimately give a
degree distribution for a network that includes both
false negatives and positives, although it is important
to note that this method assumes false negatives
and positives are independent. In other words, it is
assumed that false negatives do not remove
false-positive edges, and false-positive edges do not
re-introduce true edges, which were removed as false
negatives.

To predict the probability that some species A has
degree k0A after φn false negatives have been removed
from and φp false positives have been added to the net-
work, we can calculate:

Pr k0Ajφpandφn

� �
¼
X
m¼0

Pr mjφp

� �
Pr k0A −mjφn

� �
, ð24Þ

which is the convolution of Equations (20) and (22). As
before, we can average over all species to get the updated
degree distribution

p k0ð Þn,p ¼
1
Ns

X
A

Pr k0Ajφp and φn

� �
: ð25Þ

Using these equations, we can predict changes to a
network’s degree distribution when false negatives and
positives are included, both separately and together. In
the following, we use these updated degree distributions
to predict how network robustness changes with the
inclusion of false negatives and positives.

In Figure 8, we show the robustness curve for a
plant–pollinator network undergoing random extinctions
where ik ¼ k, comparing the originally predicted curve
against the predicted curves for including false negatives
alone, false positives alone, and false negatives and posi-
tives together.

In terms of robustness, false positives alone have a
more significant impact than false negatives alone in
small quantities. This is evident in Figure 8c, where
we examine the total difference in robustness between
networks with only false negatives or positives and
the original network. We can see that false positives
increase robustness more than false negatives
decrease robustness up to and including a change in
edges Δ%E of approximately 40%, which for the network
in question is 450 edges (out of 1125 edges in the original
network).

The fact that false negatives have a greater impact on
robustness than false positives in large quantities is per-
haps not surprising, given that large quantities of false
negatives entail the total disconnection of multiple spe-
cies from the network. Large quantities of false positives
appear to result in diminishing returns for increases to
robustness, likely explained by the fact that excessive
false positives tend to reinforce species that are already
very well connected, and so are not made substantially
more resistant to extinction with the addition of extra
interactions.

We can also see from Figure 8b that if equal quanti-
ties of false negatives and positives are included simulta-
neously, robustness increases. This indicates that when
false negatives and positives both occur in comparable
quantities in network data, false positives will have a
greater impact on robustness predictions than false
negatives.

Additionally, this scenario is comparable to randomly
rewiring the interactions in the network, as the total
number of edges is conserved with edges randomly
removed from some species and added to others.
However, for random rewiring it may be permissible to
rewire edges to reproduce edges that exist in the original
network, which we disallow in our assumptions for
adding false positives, so they are not necessarily identi-
cal scenarios. Nevertheless, based on these results

ECOLOGICAL MONOGRAPHS 11 of 18
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we might expect that the random rewiring of ecological
networks improves their robustness, and this may be
worthy of future consideration.

Here we have only considered a single ecological
network; in Appendix S1: Section S1 we verify similar
results on a dataset of 18 real-world plant–pollinator
networks. For this dataset, we find that if we measure
robustness where 20% of the original number of edges
are added/removed for false positives/negatives alone,
then the net change in robustness is typically positive,
that is, false positives increase robustness more than false
negatives decrease it for most networks. Additionally, we
find that robustness increases on all networks we con-
sider when 20% of the original number of edges are
added and removed for false negatives and positives
simultaneously. This supports our conclusion that false
positives have a greater impact on our assessment of net-
work robustness than false negatives.

If we assume that ecological network data gathering
in the real world is reasonably accurate, that is, unlikely
to over/under record interactions by more than 20%,
then we would expect false positives to introduce more
error into calculations of robustness than false negatives.
Particular care is needed for robustness analyses based
on metawebs of potential trophic interactions for which
the false-positive and false-negative rates are difficult to
ascertain (Maiorano et al., 2020; Morales-Castilla
et al., 2015).

While this result indicates that false positives have
more impact than false negatives, it only provides one
perspective for how these errors may be introduced into

network data. One future avenue of inquiry is to establish
the likely sources of errors and model those, as opposed
to modeling errors randomly.

EXTINCTIONS DUE TO LOSS OF
INTERACTION STRENGTH

In previous sections, we have only considered networks
in which interactions are weighted equally; that is, each
one of a secondary species’ interactions is as important
for its survival. However, in real ecological networks, a
secondary species may interact more with one primary
species than another, and this has an impact on a second-
ary species survivability (Berlow et al., 1999). We can
specify a certain percentage of total interaction strength
T that a species must lose before it goes extinct, an
approach used before by (Schleuning et al., 2016). For
some species A, there will be a threshold value of interac-
tion strength iA that must be lost for A to go extinct, and
we may calculate iA as iA ¼ TkAd e.

To model the loss of interaction strength mathemati-
cally, let us define two vectors associated with some spe-
cies A. The first is the vector of interaction strength
weights, wA ¼ wA,1,wA,2,…,wA,kA½ �, where wA has individ-
ual elements wA,z that correspond to the interaction
strength shared with the zth neighbor of A.

Once some number of neighbors of A has gone
extinct, we need to determine the probability that some
combination of weights wA,z has been removed such that
their sum meets or exceeds A’s extinction threshold iA.

F I GURE 8 (a) Analytically predicted robustness curves for a real-world ecological network from a study by (Kato, 2000) for the original

network, the network with false-negative edges randomly removed, the network with false-positive edges randomly added and the network

with both false negatives and false positives simultaneously. Note that false edges totaling 20% of the original number of edges in the

network are added or removed. (b) Shows how network robustness changes as edges are added or removed, and (c) shows the difference

between the robustness of networks with only false negatives or false positives and the original network.
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We may do this by specifying some random vector
YA ¼ YA,1,YA,2,…,YA,kA½ �, where YA has individual
elements YA,z corresponding to whether or not A has lost
its zth neighbor. Each element YA,z is a random variable
that takes on values of 0 or 1. YA,z ¼ 0 if the zth neighbor
of A is still present in the network, and YA,z ¼ 1 if the zth
neighbor of A has gone extinct.

Therefore, if species A has lost some j neighbors, we
may express the probability that A has gone extinct as

Pr A extinctj jð Þ¼Pr wA ×YA ≥ iAj
XkA
z¼1

YA,z ¼ j

 !

¼ Pr
XkA
z¼1

wA,zYA,z ≥ iAj
XkA
z¼1

YA,z ¼ j

 !
,

ð26Þ

where wA ×YA ¼PkA
z¼1wA,zYA,z is the dot product of

wA and YA. Using Equation (26) we can update our
extinction probability for some secondary species A given
the extinction of some φ primary species to:

Pr A extinctjφð Þ¼
XkA
j¼0

Pr k0A ¼ kA − jjφ� �

Pr
XkA
z¼1

wA,zYA,z ≥ iAj
XkA
z¼1

YA,z ¼ jj
 !

: ð27Þ

Therefore, the robustness of an ecological network for
this scenario may be calculated as:

R¼ 1−
1

Np + 1

XNp

φ¼0

X
A

Pr Aextinctjφð Þ: ð28Þ

However, it is challenging to predict robustness ana-
lytically in this scenario because the extinction probabil-
ity Pr Aextinctjjð Þ depends on the weight vector wA, the
elements of which do not necessarily follow any particu-
lar distribution. It is instead necessary to estimate
Pr Aextinctjjð Þ in some way. The brute force method is to
repeatedly randomly sample the vector YA under the con-
dition

PkA
z¼1YA,z ¼ j and count the number of samples for

which
PkA

z¼1wA,zYA,z ≥ iA to estimate Pr Aextinctjjð Þ.
However, this Monte Carlo method approach of
repeated random sampling must be repeated many times
to give an accurate estimate, and is subject to statistical
fluctuations.

Instead, we have developed a deterministic sampling
method, where for some species A the weight vector wA

has its elements wA,z arranged in descending size order,
such that wA,1 ≥wA,2 ≥ ::≥wA,kA . We then estimate

Pr
PkA

z¼1wA,zYA,z ≥ iAj
PkA

z¼1YA,z ¼ j
� �

by considering the
sum of the first δ elements of wA �YA, that is, we calcu-
late Pr

Pδ
z¼1wA,zYA,z ≥ iAj

Pδ
z¼1YA,z ≤ j

� �
. We refer to the

maximum number of elements δ as the “depth” of our
sampling, with higher δ values giving more accurate esti-
mations with the trade-off of greater computational cost.

Due to the ordering of the weight vector wA, we can
ensure that our sampling method is deterministic, while
also improving upon the Monte Carlo method in terms of
estimation quality and speed by using a method that
allows us to calculate Pr

Pδ
z¼1wA,zYA,z ≥ iAj

Pδ
z¼1YA,z ≤ j

� �
without having to explicitly calculate all possiblePδ

z¼1wA,zYA,z values. Further details of how our sampling
method works are provided in Appendix S1: Section S2.

Using our deterministic sampling method, we can
provide quasi-analytic predictions for secondary species
survival on networks undergoing random primary extinc-
tions, where interaction strength is weighted unevenly
and secondary extinctions occur after the loss of a certain
percentage of interaction strength. Example predictions
are given in Figure 9, alongside results showing how our
deterministic estimate becomes increasingly accurate
with greater depth, and a comparison between the time
taken to estimate Pr Aextinctjjð Þ and prediction accuracy
for our deterministic sampling method and for a brute
force Monte Carlo method.

From this, we can see that as the depth of the deter-
ministic estimation increases, we get diminishing returns
in terms of prediction accuracy, and that it is more com-
putationally efficient to use the deterministic estimation
method as opposed to Monte Carlo simulation to get the
same level of prediction accuracy.

SPECIES SPECIALIZATION AND
GENERALIZATION

Having developed an analytic framework for secondary
species extinctions when interaction strength is
weighted unevenly, we can examine some extreme sce-
narios of interaction strength weighting. One property
of interest in ecological networks is specialization
(Blüthgen et al., 2006), where specialist species tend to
interact very strongly with a small number of species,
and generalist species tend to interact with many spe-
cies evenly. Given an ecological network with a set
number of primary and secondary species, and a set dis-
tribution of interactions, we can examine the most spe-
cialist interaction weighting and the most generalist
interaction weighting.

In the most specialist case, each secondary species
weights one of its interactions at close to 100% of its
interaction strength, and all others close to 0%.

ECOLOGICAL MONOGRAPHS 13 of 18

 15577015, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecm

.1601, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Therefore, a given secondary species A only goes extinct
when it loses the neighbor with which it shares almost
all interaction strength. If a neighbor of A goes extinct,
the probability of losing the heavily weighted neighbor is
simply 1

kA
, so Pr Aextinctjjð Þ¼ j

kA
. This give an extinction

probability for some species A of:

Pr A extinctjφð Þ¼
XkA
j¼0

Pr k0A ¼ kA − jjφ� � j
kA

,

¼ k0A
� �
kA

,

¼ φ
Np

,

ð29Þ

which we derive from the fact that  k0A
� �¼ kA

φ
Np

because
Pr k0A ¼ kA − jjφ� �

describes the hypergeometric distribu-
tion. This results in a robustness value of R¼ 0:5, regard-
less of the secondary degree distribution, number of
primary species or threshold.

For the most generalist case, each secondary species
weights all of its interactions evenly, which means
Pr A extinctjjð Þ¼ 0 when j< ik, and Pr A extinctjjð Þ¼ 1
when j≥ ik. Therefore, Pr A extinctjφð Þ¼PkA

j¼ik
Pr k0A ¼
�

kA − jjφÞ, the same as Equation (4).
Given these results, when is it more advantageous for

a network to be highly specialist or highly generalist in
terms of robustness? Let us consider some secondary

species A that is connected to all primary species in its
network, that is, kA ¼Np. Every primary species that
becomes extinct will reduce the degree of A, with A going
extinct once the number of primary species removed φ is
equal to or exceeds the extinction threshold ik. Therefore,
the extinction probability for A is given by:

Pr A extinctjφð Þ¼ 1 if φ≥ ik,

0 otherwise:

�
ð30Þ

If all secondary species in a network have k¼Np,
then when they are maximally generalist, the network
robustness is R¼ ik

Np
. Therefore, such a network is more

robust when secondary species are maximally generalist
if more than 50% of interaction strength must be lost
before a secondary species goes extinct, that is, when the
sensitivity threshold T >0:5. Conversely, the network is
more robust when secondary species are maximally spe-
cialist if less than 50% of interaction strength must be lost
to make secondary species go extinct, so T <0:5. To illus-
trate this, we provide robustness curves in Figure 10a a
single secondary species with kA ¼Np, and of Figure 10b
an entire real-world network.

From these results, we know that either extreme of
species specialization can be advantageous from the per-
spective of maximizing network robustness, depending
upon the sensitivity of the network, that is, the propor-
tion of interaction strength that must be lost for

F I GURE 9 (a) Analytically predicted and computationally simulated robustness curves for a real-world network from a

study by (Kato, 2000) where unevenly weighted interaction strength is taken into account and extinctions occur over a

specified threshold T of interaction strength loss. Analytic predictions are given for threshold values of 70%, 50%, and 30%, and

computationally simulated curve averaged over 5000 iterations is given for 50%. (b) Comparison between depth of the

estimation for Pr A extinctjjð Þ and divergence (as defined in Equation (7)) between analytically predicted robustness curve

and the simulated curve averaged over 5000 iterations. (c) The divergence between the predicted robustness curve and the

5000 iteration simulation curve compared against the time taken, with data for both the deterministic estimation method and

the Monte Carlo method.
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secondary species to go extinct. However, we see in
Figure 10b that it is not strictly the case on real networks
that maximum generalization is always better for robust-
ness than maximum specialization when T >0:5, as the
maximum generalist curve when T¼ 0:5 gives R¼ 0:471,
whereas the maximum specialist curve has R¼ 0:5. This
is because secondary species typically have k<Np on real
networks. Additionally, we note that the robustness
values from the maximum generalist and maximum spe-
cialist interaction weightings do not necessarily give the
maximum and minimum robustness values for a given
threshold. Nevertheless, these results are still indicative
of the fact that species generalization and specialization
can both improve network robustness in different con-
texts, and so we might expect that in the real world, a
network that has developed to be highly generalist is less
sensitive to interaction loss than a network that has
developed to be highly specialist.

INTERACTION LOSS

The models we have considered are only concerned with
the loss of primary species as a whole, where a primary
species is removed at each “step” in the extinction pro-
cess. Considering the loss of entire species at a time can
skew our understanding of network robustness, for exam-
ple a plant–animal network with more animals than
plants will appear more robust against primary extinc-
tions of animals than against primary extinctions of
plants (Schleuning et al., 2016). However, is this a

realistic understanding of how species go extinct? There
may be more animal species than plant species, but
what if there is a very large population of each plant
species and a small population of each animal species?
Extinctions may be experienced more gradually, where
a species’ population dies off over time rather than all
at once (Valiente-Banuet et al., 2015). This process can
be modeled by examining the loss of interactions as
opposed to the loss of species, which in network terms
entails considering edge removal as opposed to node
removal.

If the interaction strength between species is
represented as integer values, then we can treat each
unit of interaction strength as an edge, so secondary
species have degree values equal to the sum of their
interaction strength with other species. We then have E
“edges” (i.e., total interaction strength on the network),
and we remove some φ units of interaction strength. For
a given secondary species A, after removing some φ
interaction strength the probability that it has lost some
interaction strength j is:

Pr k0A ¼ kA − jjφ� �¼
kA
j

� �
E− kA
φ− j

� �
E
φ

� � if φ≥ j,

0 otherwise,

8>>>><
>>>>:

ð31Þ

which is the same as Equation (20) for predicting the
change in secondary species degree due to false negatives.

F I GURE 1 0 (a) Shows species survival for maximal generalists and maximal specialists at various sensitivity thresholds T when

kA ¼Np. (b) Gives robustness curves for maximal generalization and maximal specialization on a real-world network from a study by Kato

(2000) at various sensitivity thresholds T.
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However, it should be noted that for this scenario, kA is
the initial total interaction strength of A, and k0A is the
total interaction strength of A after removing φ interac-
tion strength, because we are treating each unit of
interaction strength as an edge. From this, it is straight-
forward to predict secondary species’ survival probability
and network robustness using a similar logic as in the
section Introducing the analytic framework. Predictions
for interaction loss on an ecological network are given in
Figure 11.

These predictions of interaction loss give different
robustness values than predictions of species extinctions.
For example, for species extinctions on a real network
(Kato, 2000) when true interaction strength values are
used (as shown in Figure 9a) and T¼ 0:7, we have
Rspecies ¼ 0:619. By contrast, for interaction loss on the
same network when T¼ 0:7, we have Rinter ¼ 0:653.
Therefore, modeling secondary species extinctions as an
outcome of interaction loss as opposed to primary species
extinctions gives a different perspective on network
robustness, allowing one to identify networks that are
fragile against primary species loss but robust against
interaction loss, and vice versa.

A similar logic to that presented in the section
Introducing the analytic framework may be followed to
show that a network with a set number of primary species,
secondary species and total interaction strength is maxi-
mally robust against random interaction loss when all sec-
ondary species have equal interaction strength, and a proof
of this is provided in Appendix S1: Section S3.

While we have discussed extinctions in this section as
being “secondary” extinctions for terminological consis-
tency to denote the group we are interested in measuring,
in this scenario there are no de facto primary and secondary

groups of species. Therefore, a possible future extension is
to consider the vulnerability of all species in the network to
gradual interaction loss, alongside the structures that make
a network most robust in such a scenario.

DISCUSSION

In conclusion, we have successfully extended the robust-
ness framework of (Memmott et al., 2004) such that we
may make predictions of ecological network robustness
analytically. For random extinctions, we have shown that
degree equality among secondary species entails maxi-
mum robustness for a set number of interactions. We are
also able to predict secondary extinctions as primary spe-
cies go extinct according to some degree or extinction
risk-based targeting, and we can predict secondary
extinctions on ecological networks with more than two
layers. Additionally, we can model the influence of ran-
dom false negatives and positives in network data on
robustness, finding that in small quantities false positives
have a greater impact than false negatives on network
robustness.

Our model is also capable of predicting the robustness
of networks where interaction strength is weighted
unevenly between different secondary species’ neighbors,
and species go extinct once a certain proportion of inter-
action strength has been lost. We have given results for
robustness when interaction strength is equally distrib-
uted (maximally generalist), and when interaction
strength is shared solely with one neighboring species
(maximally specialist). From this, we know that maximal
generalization and maximal specialization can both pro-
duce a more robust network, depending on the propor-
tion of interaction strength that must be lost before
secondary species extinction. Finally, we have demon-
strated the fact that it is also possible to model interaction
strength loss as opposed to simply species extinction,
representing a more “gradual” extinction scenario.

These results represent a substantial advancement in
analytic understanding of ecological network robustness.
However, there are still many open questions. We can
predict the average secondary species extinction probabil-
ity for a given number of primary extinctions, but we
may also want to analytically predict the possible error in
robustness curves by finding the standard deviation
in secondary species extinction probability for a given
number of primary extinctions. Additionally, we may
want to establish the true worst- and best-case scenarios
for secondary extinctions, as these have not been defini-
tively identified. For errors (i.e., false negatives and posi-
tives) in network data, our current results examine errors
that occur at random, but this may not be the case in the
real world. Errors may occur due to some specific reason or

F I GURE 1 1 Robustness curves for interaction loss on a

real-world network from a study by (Kato, 2000) at varying

sensitivity thresholds T.
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dynamic, and identifying what this is may allow us to better
mathematically model data errors and their influence.

Beyond these possible improvements, it is also impor-
tant to acknowledge that in recent years, ecologists have
considered properties of ecological networks that affect
robustness and go beyond simpler models of species
extinction. For example, ontogenetic niche shifts, where
species change their diets when they undergo changes
such as growing from a larva to an adult, can affect the
structure and robustness of interaction networks
(Nakazawa, 2015). Another consideration is how interac-
tions can be “rewired” after species extinctions (Baldock
et al., 2019; Schleuning et al., 2016), which to predict analyt-
ically would likely require combinatoric methods for sam-
pling with fuzzy replacement (Kesemen et al., 2021). These
examples highlight the fact that there is still considerable
room for analytic models of ecological network robustness
to develop, and there are ongoing areas of research in both
ecological networks and combinatorics, which may comple-
ment one another well, so it may be useful for there to be a
greater dialogue between these fields in future.
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