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Local colonisations and extinctions of
European birds are poorly explained by
changes in climate suitability

A list of authors and their affiliations appears at the end of the paper

Climate change has been associatedwith both latitudinal and elevational shifts
in species’ ranges. The extent, however, to which climate change has driven
recent range shifts alongside other putative drivers remains uncertain. Here,
we use the changing distributions of 378 European breeding bird species over
30 years to explore the putative drivers of recent range dynamics, considering
the effects of climate, land cover, other environmental variables, and species’
traits on the probability of local colonisation and extinction. On average,
species shifted their ranges by 2.4 km/year. These shifts, however, were sig-
nificantly different from expectations due to changing climate and land cover.
We found that local colonisation and extinction events were influenced pri-
marily by initial climate conditions and by species’ range traits. By contrast,
changes in climate suitability over the period were less important. This high-
lights the limitations of using only climate and land cover when projecting
future changes in species’ ranges and emphasises the need for integrative,
multi-predictor approaches for more robust forecasting.

Climate change is amajor threat to global biodiversity, driving changes
in the distributions1 and abundances2 of a wide array of taxa3. Yet, the
extent towhich climate change drives species’ range shifts across large
geographic regions in relation to other putative drivers of change,
remains contested. Climate change has been associated with species’
ranges shifting towards higher latitudes and altitudes4–6, although
more complex responses can occur7. These may be a consequence of
non-directional and non-linear changes in climate (e.g., precipitation
patterns). Range shifts may also result from interactions between cli-
mate change, changes in land use and persecution by humans, and
other site-specific events1,8–10. The capability of species to track climate
change may also be modulated by their adaptive capacity, with some
traits potentially affecting species’ ability to respond andmoderate the
potential impacts of climate change on their ranges11–13. For example,
the behavioural and demographic characteristics of species, such as
dispersal ability, fecundity, and habitat and diet specialisation, can
facilitate ormoderate changes in range5,14–16. Moreover, the interaction
between various species’ traits and extrinsic drivers of changemayalso
lead to highly complex and idiosyncratic patterns of range shifts17.

Two processes determine species’ range shifts: colonisation and
local extinction8,10,17. Climate-driven colonisation is likely to occur
where climatic change has directly or indirectly released species from
barriers to dispersal and population establishment, whilst local
extinctions are likely to occur where climatic change has made con-
ditions unsuitable for the local persistence of a species18,19. Colonisa-
tions may lag behind changes in climatic suitability because other
habitat requirements, for example prey availability, are not yet met in
newly climatically suitable areas, or there may be insufficient emi-
grating dispersive individuals to colonise new areas effectively.
Extinction debts may accrue where the climate becomes unsuitable,
but the proximate determinants of occupancy persist for some time10.
Understanding the mechanisms that underlie species’ range shifts and
establishing the relative roles of climate change and other putative
drivers of range change is therefore critical if we are to identify species’
extinction risk and implement targeted conservation actions. The roles
of extrinsic environmental conditions and species’ traits in driving
colonisation and local extinctions at a continental scale, however,
remain largely unexplored.
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Here, we use the data from two European breeding bird atlases
separated by a 30-year period to test the relative roles of different
putative drivers of local extinction and colonisation events20,21. The
data for the first atlas (1985–1988) were collected at the onset of a
period of major climatic change across Europe (Supplementary
Fig. S1). The publication of the second atlas (data collected 2013–2017)
provides a unique opportunity to quantify changes in species ranges at
a continental scale over three decades of substantial environmental
change. These data also provide an excellent opportunity to test the
extent to which the projections from species distribution modelling
(SDMs) have been realised22,23. SDMs are a widely used tool for pre-
dicting the potential impacts of climate change on species’
distributions24. However, they have limitations, often failing to account
for other environmental constraints, biotic interactions, species’
adaptive capacity or dispersive abilities25,26. By comparing observed
range shifts with those predicted from SDMs, we can quantitatively
assess the importance of these apparent limitations. Thepredictions of
SDMs have been tested on national27,28 and continental scale
datasets29–31, demonstrating that SDMs can often fail to predict
observed species’ range shifts under climate change. However, the
extent to which climate change has driven observed range shifts in
relation to a suite of other biotic and abiotic factors, such as land cover
change, proximity to source populations, and species traits still needs
to be assessed.

We use data on long-term changes in the breeding ranges of
378 species of European birds to quantify the influence of a suite of
environmental covariates, including climate and land cover, and spe-
cies’ traits, on changes in species’ ranges. Specifically, we address three
key questions: (1) has climate change been the major driver of range
shifts across Europe in recent decades? (2) how do other environ-
mental factors, such as land cover, and species’ traits influence
observed species’ range changes? And (3) do the drivers of colonisa-
tion and local extinction events differ? To do this, we first use SDMs to
predict the change in the breeding ranges of 378 species of European
breeding birds between 1985–1988 and 2013–2017 expected from
either climate change only, or from climate and land cover change,
which we compare with the observed range shifts over the same per-
iod. We then assess the importance of a suite of environmental cov-
ariates and species’ traits in causing local colonisation and extinction
events. By analysing colonisations and extinctions separately, we aim
to advance understanding of the processes underlying observed range
shifts. If change in climate suitability is the predominant driver of
observed range shifts, we expect colonisation and local extinction
events to occur at the leading and trailingmargins of a species’ climatic
niche respectively. If there is no effect of climate change on species’
range shifts, we expect that local dispersal processes would lead to
colonisations centred in and around areas of high probability of
occurrence (and which we use to define areas of high initial climate
suitability) while local extinctions would occur in areas with lower
initial probability of occurrence (and therefore estimated as being of
lower initial climatic suitability). If species’ range shifts are driven by
other environmental processes or species’ traits, or the interaction
between these factors, we expectmore diverse patterns of range shifts
(See Supplementary Fig. S2 for more details on our hypotheses).

Our results show a lack of congruence between species’ observed
range shifts and those expected from either climate only or climate
and land cover SDMs, in terms of both direction and rate. Specifically,
we find that the directions of observed range shifts are more variable
than predicted by SDMs.We find that proximity to source populations
and the underlying climatic suitability of an area are of the greatest
importance in determining the occurrence of colonisation and local
extinction events. By contrast, we find the role of changing climate
suitability over the 30-year period, although significant, to be of lesser
importance. We demonstrate that, despite major differences in the
processes of species’ colonisation and extinction, the underlying

predictors are broadly similar. These results suggest that recent
observed changes in the ranges of European breeding birds have not
been predominantly driven by changes in climate, but rather have
beenmoderated by other extrinsic environmental factors and species’
traits. This has important implications for our understanding of, and
our ability to predict the impacts of, future climate change on
biodiversity.

Results and discussion
The importance of climate change for driving species’ range
shifts
Between 1985–1988 and 2013–2017, the European breeding ranges
(measured as the number of occupied 50km × 50 kmgrid cells) of 140
of the 378 study species expanded by >5%, whilst the ranges of
110 study species contracted by >5%. Themedian observed shift in the
centre of gravity (COG) of species’ ranges was 71 km (95%
CIs = 6–638km) in a median direction of 6°N but with high variance
(95% CIs = −173°S–173°S). The median rate of shift in species’ COG was
2.4 km/yr (95% CIs = 0.2–21.2 km/year, Fig. 1a and Supplementary
Fig. S3). When comparing the COG of observed range shifts to those
projected by climate-only SDMs, we saw significant differences in both
the direction (Watson–Wheeler test: W = 154.59, df = 2, p <0.01) and
magnitude (WilcoxonSigned Rank test:V = 30057, p < 0.01) in the shift
of the observed and projected COG (Fig. 1, Supplementary Figs. S3 and
S4). Projected range shifts were in a median direction of −0.9°N, with
much lower variance than observed range shifts (95%
CIs = −141.6°SW–127.1°SE). Predicted range shifts were at amedian rate
of 3.4 km/yr (95% CIs = 0.5–11.3 km/yr, Fig. 1b). We also found sig-
nificant differences in both the direction (Watson–Wheeler test:
W = 129.16, p <0.01) and magnitude (Wilcoxon Signed Rank test:
V = 45489, p <0.01) in the projected shift of the COG (Fig. 1c, Supple-
mentary Fig. S3) when comparing the COG of observed range shifts to
those projected using SDMs fitted with both climate and land-cover
variables. Projected range shifts from SDMs fitted with climate and
land cover variables were in a direction of −7.9°N (95%
CIs = −151.1°SW–96.9 °N) at a median rate of 2.2 km/yr (95%
CIs = 0.3–7.3 km/yr). In short, neither the ‘climate-only’ or the ‘climate
and land cover’ informedSDMspredicted themedianCOG range shifts
well, with the observed data also showing much higher variability in
the direction and pace of observed shifts.

The abiotic and biotic predictors of range shifts
Todevelop a fuller understandingof the processes that lead to species’
range shifts, we assessed colonisation and local extinction events
separately. We used generalised linear mixed effects models to quan-
tify the relationships between the occurrence of colonisation or
extinction events and a suite of environmental variables and species’
traits. These models revealed that, on average across species, slightly
more colonisations occurred where climatic suitability increased, and
more extinctions occurred where climatic suitability declined (Fig. 2).
Some species, such as Brambling (Fringilla montifringilla, Fig. 3c, d),
tracked projected changes in climate suitability between the two
periods verywell, butmanyother species did not.Ourmodels revealed
that the initial climatic suitability for 1985–1988 was, overall, a more
important predictor of colonisations and extinctions over the follow-
ing 30 years than change in climate over that period (Fig. 2). In parti-
cular, we found that extinctions were more likely in areas where our
estimates of initial climate suitability were low, and colonisations were
more likely in areas where estimated initial climate suitability was high.
As it is almost axiomatic that climate determines species native
ranges24, this may reflect a true signal of the importance of initial cli-
mate suitability. For example, environmental changes in an area may
not be sufficient to ensure the persistence of a species in areas of
already very low climatic suitability. Alternatively, modelled estimates
of the importance of climatic variables may, in part, reflect underlying
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spatially autocorrelated factors not considered in typical SDMmodels,
including biotic interactions, adaptive evolution and historic events25.
This would not necessarily imply that climate does not determine
species’ distributions, but rather, estimates of the species-climate
relationship are less robust. Importantly, this does not undermine our
findings of the limited influence of change in climate suitability. As our
measure of climate change is based onobserved, rather thanpredicted
data, we would also expect changes in climate to correlate with
changes in species’ ranges where there is a causal relationship.

The occurrence of colonisation and extinction events were also
strongly influenced by the distance from the nearest continually
occupied 50 × 50 km grid cell, with colonisations more likely to occur
closer to occupied grid cells, and extinctions more likely in more dis-
tant areas. This pattern matches the expectations of the ‘rescue
effect’32, with less isolated patches likely to receive more dispersing
individuals resulting in either a greater probability of colonisation or
the ‘rescuing’ of more susceptible populations from becoming locally
extinct (Supplementary Fig. S2). We also found that, in areas closer to
the centre of a species range, colonisation events were more likely,
whilst extinction events were less likely. In areas closer to a species
range centre, often a larger fraction of suitable habitat is occupied,
producing a greater abundance of emigrating dispersive individuals,
and further increasing the probability of colonisation or the ‘rescuing’
of smaller populations32. Models of colonisation and local extinction
events fitted without these two variables (distance to the nearest
continually occupied grid cell and the distance of a grid cell to the
species COG in the first atlas) performed substantially worse than
those fitted with them (Models fitted with distance variables: coloni-
sation models mean marginal R2 = 0.59, S.D. ± 0.03, extinction models
mean marginal R2 = 0.82, S.D. ± 0.02; Models fitted without distance
variables: colonisation models mean marginal R2 = 0.17, S.D. ± 0.02),
extinctionmodels meanmarginal (R2 = 0.55, S.D. ± 0.03). These results
provide further evidence of the strong influence that the interactions
between spatially structured populations can have on species’ range
dynamics32. Furthermore, they also suggest that the ability to predict
species future range shifts without considering which cells are con-
tinuously occupied would likely be poor.

Larger areas of suitable habitat also increased the likelihood of
colonisation and reduced the likelihoodof extinction. Notably, species
associated with forest habitats, such as the Middle Spotted

Woodpecker (Leiopicus medius, Fig. 3e, f), appear to have benefitted
from the widespread expansion, conservation and maturation of for-
ests across much of Europe33. Conversely, despite large-scale
improvement in simulated climate suitability across Europe, some
species associated with agricultural environments, such as the Crested
Lark (Galerida cristata, Fig. 3a, b), have undergone substantial popu-
lation declines across some parts of their range in response to wide-
spread patterns of agricultural intensification and abandonment34. It
has been suggested that there is a hierarchy of environmental controls
on species’ distributions, with climate operating at the largest scales,
and topography and land cover moderating these effects at smaller
scales35. Despite this, our results show that land cover still has a strong
and significant effect in driving colonisation and local extinction
events, even at a 50 × 50km scale.

Species’ traits had some influence on the likelihood of colonisa-
tion and extinction events. Species that have either a history of per-
secution and/or are listed on Annex I of the EuropeanUnion (EU) Birds
Directive, for which the Member States are obliged to implement
special conservation measures, were less likely to undergo local
extinctions and more likely to colonise new areas. For example, the
White-tailed Sea Eagle (Haliaeetus albicilla, Fig. 3g, h) has undergone
substantial range expansion over the past 30 years in response to a
reduction in persecution and numerous reintroduction programs36.
Many of the species listed on Annex I and previously subject to per-
secution, such as birds of prey, may also have benefited from reduc-
tions in pesticide use since the 1970s37. For example, the thickness of
European Sparrowhawk (Accipiter nisus) eggs in the UK (and conse-
quently productivity) did not recover until DDT was banned in 198638.
This lower rate of local extinctions of Annex I species provides further
support for the positive impact of EU conservation legislation on tar-
get species39.

Species with larger ranges had higher probabilities of local
extinctions (Fig. 2), despite the expectation that narrowly distributed
species are more vulnerable to extinction32,40. Notwithstanding the
influence of range size, most species-specific traits were of limited
importance in our models. This aligns with previous studies that also
found species’ traits tobepoorpredictors of range shifts41. This is likely
due to many hypothesised confounding effects of species’ traits on
range shifts. For example, species with greater diet breadth are
expected to shift their ranges more readily as they are more likely to

Fig. 1 | Observed (a) and predicted (b and c) shifts in the distance and direction
of the ranges of 378 species of European breeding birds between the periods
1985–1988 and 2013–2017. Observed range shifts (a) are based on the species’
range data from the European Breeding Bird Atlases (EBBAs), whilst predicted
range shifts are from species distribution models fitted to species data and either
climate only (b) or climate and land cover (c) data related to the 1985–1988 atlas
and projected to the 2013–2017 period. Each line represents a single species. The

centre of each polar plot represents either the observed (a) or predicted (b, c)
centre of gravity of the 1985–1988 range for each species. Lines show the distance
and direction between the observed or predicted 1985–1988 centre of gravity and
the equivalent 2013–2017 range. Lines are coloured by the number of 50× 50 km
UTM grid cells a species occupied in 1985–1988 (i.e., EBBA1). Source data are
provided as a Source Data file.
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find suitable food in novel environments, yet specialist species are also
likely to demonstrate more rapid range shifts as they track their
resources14,42,43. Single measures of species’ traits also do not reflect
interspecific variation across geographic ranges and/or phenotypic
variation andplasticity over anorganism’s lifetime. Itmay be that traits
associatedwith specific populations or life-history stagesmaybemore
strongly related to the processed driving range shifts, e.g. the pro-
pensity for birds living at the leading edge of their range to be larger44.
Treating species as fixed entities, may not encapsulate the trait values
responsible for driving range shifts41,43.

Despite the fundamental differences in the processes of coloni-
sation and extinction events45, our results revealedmarked similarity in
the putative drivers of these events; distance to the nearest continually
occupied grid cell, climate suitability and range size were the three
most important variables in our models of colonisations, whilst the
three most important variables in our models of extinctions were
distance to the nearest continually occupied grid cell, climate suit-
ability, and distance to species’ COG (Fig. 2b). Surprisingly, given that
species are theorised to be more susceptible to changes in climate at
their poleward range margin than at their equatorial range margin
(where inter-specific competition has been proposed as an important
range-margin determinant)18, we found no evidence for differences in
the importance of change in climate suitability between the two sets of
models. Furthermore, changes along species’ trailing rangemargin are
thought to be modulated by their population dynamics, with longer-
lived, less dispersive species expected to respond more slowly43,46.
However, we found no evidence that species’ traits were stronger
drivers of local extinctions than colonisations.

Wider implications
The lack of congruence between observed range shifts and those
predicted by climate SDMs, and the small effect of change in climate
suitability in ourmodels of colonisation and extinction events, suggest

that recent changes in climate were not the predominant driver of
shifts in bird species’ ranges across Europe since the 1980s. However,
we stress that this finding does not necessarily suggest that climate is
an unimportant driver of species’ ranges, nor that species are not
shifting their ranges in response to climate change. Our analysis does
reveal a small, significant effect of change in climate suitability on
species’ colonisations and extinctions. Furthermore, any climate-
driven changes in local population density that do not result in
either a colonisation or an extinction event will not be reflected in our
results. Changes in climate have been widely associated with species’
population trends2,47. In our analyses, a species that had undergone
large declines in local abundancewould still be regarded as present if it
persisted, even if much reduced. Moreover, if the proximate deter-
minants of occupancy allow a species to continue to persist in an area
despite local declines in climate suitability, climate-driven extinction
debts may accrue10. Despite the relatively long study period, species’
range responses may lag behind the rate of climate change, limiting
our ability to detect the true importance of changes in climate in
driving species’ range shifts. Finally, despite bioclimatic variables often
being strongly correlated, it may be that species are responding to
aspects of climate not reflected in our SDMs48.

Our results emphasise that species’ range responses to climate
change are likely complex, modulated by both other extrinsic envir-
onmental factors and species’ traits. The substantial variation in
observed species’ range shifts is striking. Studies have previously
shown that species’ range shifts in response to climatic change are
often idiosyncratic1,4,49, and rarely closely mirror expectations of pre-
dicted range shifts under climate change27,29,30. Here, we have also
shown that the ability of SDMs to predict species responses to climate
change is not improved by also accounting for changes in land cover.
Our results demonstrate how recent climate change often contributes
relatively little to contemporary range changes. Instead, initial climate
suitability, other environmental constraints such as the extent of

Distance from species EBBA1 COG − C

Distance from nearest continually occupied cell − C

Range size − S

Persecuted − S

Montane status − S

Migratory Distance − S

Mean mass − S

Hand Wing Index − S

Habitat breadth − S

Generation length − S

Diet breadth − S

Clutch size − S
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Habitat diversity − E
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Fig. 2 | Standardised coefficients (a) and percentage of variance explained (b)
from MCMC generalised linear mixed models of the colonisation (orange,
mean marginal R2 = 0.59, S.D. ± 0.03) and extinction (purple, mean marginal
R2 = 0.82, S.D. ± 0.02) events of 336 species of European breeding birds
between 1985–1988 and 2013–2017. Fewer species were included in this analysis
due to the completeness of explanatory variables. Variables are grouped into
broader classes, which are indicatedby the capital letters on the side of the variable
names: Environmental covariates (E), Species-specific traits (S), and Species cell
traits (C). In a, points indicate the mean estimated effect size, thick horizontal bars

indicate the posterior standarddeviations, and the thinhorizontal lines indicate the
95% credible intervals of the coefficient values producedby averaging 100 separate
MCMCglmms. Emboldened y-axis labels indicate variables for which their CIs did
not overlap zero in either set of models. To standardise coefficient values, all
predictors were z-transformed. In panel b, points indicate the median, thick hor-
izontal bars indicate the inter-quartile range, and the thin horizontal lines indicate
the 95% confidence intervals of the percentage of explained variance across
100 separate MCMCglmms. Source data are provided as a Source Data file.
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Fig. 3 | Observed changes in species’ ranges between 1985–1988 and 2013–2017
(a, c, e, and g) and predicted changes in climate suitability for the same time
period (b, d, f, and h) for four species of European breeding birds. a, b Galerida
cristata (image by Szabolcs Kókay), c, d Fringilla montifringilla (image by Lluís
Sogorb), e, f Leiopicus medius (image by Szabolcs Kókay), and g, h Haliaeetus
albicilla (image by Eugeny Koblik). Maps of observed changes in species’ ranges
(left-hand maps) indicate areas where species have colonised (blue), areas where
species have gone locally extinct (red) and those areas which species occurred

during both Atlases (grey) between 1985–1988 and 2013–2017. Maps of predicted
changes in climate suitability (right-hand maps) show the difference in the pre-
dicted climate suitability between the two time periods. Climate suitability was
calculated using species distribution models based only on bioclimatic variables.
Note, the colour scale of climate suitability plots varies between species. Source
data are provided as a Source Data file.
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favourable land cover, and species range traits explain some of this
variation. Crucially, our finding of the importance of the proximity to
source populations highlights the role that the interactions between
spatially structured populations can have on species range dynamics,
and the value of accounting for metapopulation processes when
anticipating range shifts. Thus, we conclude that predictions of spe-
cies’ range shifts, as a response to future environmental change, based
on climatic and broad-scale land cover variables are unlikely to be able
to fully capture these complex responses. This has important ramifi-
cations for interpreting studies that have predicted species’ range
shifts based only on species’ climatic niches22,23. Our results emphasise
the importance of considering the other complex processes that can
drive colonisation and extinction events, alongside extrinsic environ-
mental factors, for robust forecasting of species’ range responses to
future environmental change.

Methods
Species data
Data on the distributions of European breeding birds were obtained
from two Europe-wide distribution atlases20,21. These atlases provide
records of each species’ occurrence across Europe in circa 2819
50 × 50km squares of a modified Universal Transverse Mercator
(UTM) grid. Data in the first atlas were collected during the 1980s
(mainly 1985–1988), and in the second during the 2010s (mainly
2013–2017), i.e., around three decades after the first. For a species to
be considered present in a grid cell, at least one pair of breeding
individuals had to be recorded during the sampling period. Further
details on the collection of these data can be found in Hagemeijer &
Blair20, and Keller et al.21. In Russia and some other parts of eastern
Europe species records were primarily qualitative in one or both
atlases and were therefore excluded from our analyses. Details on how
regions with poor sampling coverage were identified can be found in
Keller et al.21. Data from 2117 50×50 km grid cells were used in the
analyses, which equates to a total study area of 5,292,500 km2 (Sup-
plementary Fig. S5). From the 625 species included in either of the two
European atlases, some species were not included in the analyses for
the following reasons. We excluded species considered as either
introduced or invasive in Europe. We also excluded species that were
considered to breed irregularly either in the first and/or the second
atlas, and species that spend a significant proportion of their time at
sea, whose ranges and abundances will be predominantly driven by
processes not reflected in our variables. Taxonomic changes (i.e.
species lumped or split) and changes in grid allocation between the
two atlases were taken into account so that the dataset used in the
analyses was consistent for a 30-year comparison of species occur-
rence across squares21. For example, Phylloscopus bonelli and Phyllos-
copus orientalis were considered to be the same species in the first
atlas, so they were treated as a single taxon in our analyses. Due to
model building limitations in SDMs, 36 species that were recorded in
fewer thanfive grid cellswere also excluded from further analyses. This
left 378 species of European breeding birds for subsequent analysis
(See Supplementary Data 1 for a list of species).

Species’ trait data, for a suite of traits previously hypothesised to
be informative for predicting species’ range shifts50, were collated for
the 378 species from published data sources. These traits included
mean body mass51, generation length52, clutch size53, hand-wing
index54, migration status55, and diet breadth56. Mean migratory dis-
tance was calculated as the great-circle distance between the centre of
gravity of species’ breeding and non-breeding ranges, as defined by
BirdLife International57 and following Gilroy et al.58. As there was a
strong association between migration status and migratory distance
(Supplementary Fig. S6), we repeated the analysis with each variable.
There were no substantial differences between models fitted with
either variable (Supplementary Figs. S7 and S8). Diet breadth was
quantified as Shannon’s richness index (calculated with R package

‘vegan’59) of the proportional use of different diet categories: inverte-
brate, vertebrate (endotherm), vertebrate (ectotherm), fish, vertebrate
(unknown), scavenge, fruit, nectar or pollen, seed, other plant mate-
rial. We also collated information on the breadth of habitats used by a
species fromDucatez et al.60. These data were, however, only available
for 336 species.We, therefore, repeated the analyses described below,
with and without this variable. The inclusion of this variable had no
substantial effect on the overall results of the analysis (Supplementary
Figs. S7 and S8). We also separately classified whether species were
montane, as montane species have been hypothesised as being espe-
cially vulnerable to climate change61. We collated information on
whether species were specially protected (Annex I status, EU 2009) or
had been subject to persecution across Europe. For the latter, we
obtained information for each species on the number of birds killed or
taken illegally in Europe per year62,63, which we then expressed as a
percentage of the total size of the European population using infor-
mation from BirdLife International64. Finally, we calculated the size of
each species’ range in the first atlas, measured as the number of
occupied 50× 50km grid cells. See Supplementary Data 1 for all
species-specific values.

Environmental covariates
Climate suitability. To provide a measure of the change in climate
suitability for each species in each 50×50 kmgrid cell, we used species
distribution models (SDMs) to model each species’ climatic niche
across Europe, Turkey, and North Africa. The latter regions were
included to encompass the southern rangemargins of asmany species
as possible, thus improving the overall performance of the SDMs65. For
Europe, we used the occurrence data from the first atlas20. Occurrence
data for Turkey and North Africa were obtained from BirdLife Inter-
national andNatureServe57. These data are available as range polygons,
which we intersected with the same 50km× 50km UTM grid used in
the atlases.

To best capture the climatic niche for each individual species, we
employed a model selection procedure to select a set of ecological
relevant variables that are non-collinear and produce high-performing
models66. Data for two climatic variables, mean monthly temperature
and precipitation from 1968 to 2017 (the period during which most
data underlying the species’ range extent maps of both atlases were
collected), were obtained from the CRU TS 3.25 0.5° dataset67.
These data were used to calculate eight bioclimatic variables at the
same resolution and for the samearea as the species’ range data. These
included mean annual temperature and precipitation, seasonality of
both temperature and precipitation, maximum temperature of the
warmest month, minimum temperature of the coldest month, pre-
cipitation of the wettest month, and precipitation of the driest month.
These variables capture the typical conditions on the breeding
grounds of European breeding birds, along with the variability and
extremes in those conditions, and have previously been shown to
be informative in describing both the range extents and abundance
patterns47,68,69 of these species. We calculated mean values of these
eight bioclimatic variables for two time periods, 1968–1988 and
1997–2017. The use of a 20–30-year period to represent the average
‘climatic normal’ conditions for an area is standard practice in the field
of climate science, with these time periods overlapping when most
species’ occurrence data were collected for the two atlases. We gen-
erated all possible combinations of these variables, containing a
minimumof three and amaximumoffive variables. This resulted in 182
possible combinations. Of these, 10 combinations were discarded as
they did not contain both a temperature andprecipitation variable.We
further discarded 139 combinations after tests for collinearity revealed
pairwise correlations between variables of r >0.770 (Supplementary
Fig. S9). This left 33 potential variable combinations, which were used
to build Generalised Additive Models (GAMs) for each of the 378 spe-
cies. For more details on the fitting of GAMs, see below. We then
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ranked the 33 variable combinations using AIC to identify the best
performing set of bioclimatic variables for each species (Supplemen-
tary Fig. S10). The top set of predictor variables for each species was
then used to fit species-specific SDMs, see below. To test how robust
our results were to the selection of climatic variables, we also fitted
SDMs using the best performing set of climatic variables across all
species. To identify this set, we tallied the number of times that eachof
the 33 variable combinations appeared in the top quartile of candidate
sets across all species. This set included mean annual precipitation,
seasonality of precipitation, seasonality of temperature, andmaximum
temperature of the warmest month. This combination was in the
highest performing quartile for 85% of the speciesmodelled.We found
no substantial differences in the overall results using the different set
of climatic predictors (Supplementary Figs. S7 and S8).

To model the relationship between the 1968–1988 bioclimatic
variables and the 1985–1988 species’ ranges, we used an ensemble
SDMmodelling framework, combining fourwidely applied techniques.
To provide contrast we used a parametric approach, Generalised Lin-
ear Models (GLMs), a semi-parametric approach, GAMs, and two
machine-learning approaches, Generalised Boosted Regression Mod-
els (GBMs; also referred to as Boosted Regression Trees, BTRs) and
RandomForests (RFs). Thesemethods have all been shown to produce
models thatperformwellwhenused in an ensemble SDMapproach71,72.
Details on the individual modelling approaches and methods to
account for spatial autocorrelation (SAC) can be found below. When
fitting amodel, nine of ten cross-validation sampling blocks were used
as the training data set, with model fit assessed using the Area Under
the Curve (AUC) of the receiver operating characteristic (ROC) plot73,74

on the omitted block. As all sampling blocks cover a similar range of
bioclimatic data, this method ensures that a similar range of data is
used for both testing and trainingmodels, whilst also ensuring that the
testing data are spatially segregated from the training data (Supple-
mentary Fig. S11). This method has been shown to perform well at a
large scale, minimising the influence of SAC whilst allowing models to
capture complex spatial processes71. By sequentially omitting each of
the ten blocks, fitting the model to the remaining nine blocks and
testing the performance on the omitted block, ten models were fitted
for each of the four modelling techniques. This resulted in 40 models
for the breeding ranges for all 378 species. To assess model fit, the
medianAUCcalculated for the omitted blockswas taken across the ten
models for each of the four modelling techniques for each of the
378 species.

Spatial Autocorrelation (SAC). To account for spatial autocorrelation
(SAC) when modelling species’ climatic niches, we used a ‘blocking’
method71,72, whereby we split the data into ten sampling blocks based
on ecoregions (75, http://www.worldwildlife.org/science/data). SAC
occurs when proximate samples show a greater degree of similarity
due to distance-related biological processes and spatially structured
environmental processes76. Failure to account for SAC influences both
coefficients and inference in statistical analyses through (1) the viola-
tion of the independence assumption and, (2) auto-correlated resi-
duals and hence inflation of type 1 errors77. To create the ten sampling
blocks, first we classified each non-contiguous area of an ecoregion
within the area of study as a separate sampling unit; these sampling
units were then grouped into ten blocks so that the mean bioclimate
was similar across all blocks, but each block covered the full range of
bioclimates within the area of study72,78 (see Supplementary Fig. S11)

Generalised Linear Models (GLM). GLMs79 were used to fit up to, and
including, second order polynomial relationships between the three
relevant bioclimatic variables and individual species occurrence. For
each species, after omitting one sampling block for model evaluation,
nine models (3 bioclimatic variables ^ 2 polynomial degrees = 9 com-
binations) were fitted to the remaining nine blocks. AUCwas then used

to assess the model fit using the excluded block of data. This proce-
dure was repeated excluding each of the ten data sampling blocks
sequentially. The combination of polynomial terms for each biocli-
matic variable that maximised AUC in each of the ten repeated model
fittings was then used to fit a final set of ten models, with each final
model fitted to nine blocks of data and evaluated using AUC on the
omitted block.

Generalised Additive Models (GAM). Relationships between biocli-
matic variables and species occurrenceweremodelled using thin-plate
regression splines. Models were fitted to nine blocks of data, after
omission of one sampling block for model evaluation using AUC, and
the process repeated until each of the ten sampling blocks had been
sequentially omitted. These regressions were fitted as a Bernoulli
response, using a logit link, andutilised the ‘gam’ function in the ‘mgcv’
R package80.

Generalised Boosting Methods (GBM). Generalised boosted models,
a machine learning technique, sequentially builds many simple
regression trees, which are then combined to optimise predictive
performance81. This technique requires the user to set three para-
meters: learning rate (lr; also known as the shrinkage parameter)
determines how much each tree contributes to the final model; tree
complexity (tc) controls the number of nodes within a tree; and the
number of trees (nt) that are to be retained in the finalmodel.We used
a cross validation approach to optimise these parameters for each
species. Initially, omitting one block at a time, we fitted a model to the
remaining nine blocks using an lr of 0.001, an nt of 5000 whilst
allowing tc to vary between one and four. The value of tc that returned
the minimum summed error across all blocks from a cross-validation
approach was used to fit a final set of ten models.

Random Forests (RF). Random forests82,83, are a classification and
regression tree (CART) approach, which draws bootstrap samples and
a subset of predictors to construct multiple classification trees84. This
method requires the user to set two parameters; the number of trees
(nt) that will constitute the final model and the number of variables
randomly sampled as candidates at each split (mtry). We initially set
mtry to vary between one and three and then fitted an RF model with
1000 trees to the data after sequentially omitting one block. We
assessed the fit of themodel on the omitted block using AUC.We then
added 500 trees to the model and reassessed AUC. This process was
repeated until any improvement in the value of AUC, as a result of the
additional trees, was <1%. The values of mtry and nt that maximised
mean AUC across the ten blocks of omitted data were used to fit the
final ten models.

We applied the 40 SDMs for each species (10 block models x four
modelling techniques) to the mean bioclimatic data from the CRU TS
3.25 0.5° dataset67 for the two timeperiods (1968–1988and 1997–2017)
which each represented a climaticwindow in the period preceding and
including the two data collection periods. For each species for each
period, we took the weighted mean predicted probability of occur-
rence, weighted by model performance, for each grid cell from the 40
SDMs as a measure of climate suitability. SDMs for all species per-
formed well (mean AUC=0.94 S.D. ± 0.06, Supplementary Table S1).
For each species and for each grid cell we calculated a measure of
baseline (referred to in the text as initial) climate suitability by taking
themedian across all projections from the40SDMs for the timeperiod
1968–1988. We also calculated the change in climate suitability for a
species in a grid cell by subtracting the median 1968–1988 predicted
climate suitability from the median 1997–2017 predicted climate
suitability. We take the mean probability of occurrence as, unlike
threshold approaches, it does not degrade the information available in
our predictions85. This climate-only modelling does not produce a
realistic projection of change, but it allows us to determine the extent
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towhich species are being restricted by climate alone. Herewe present
changes in climate suitability across Europe, alongside plots of chan-
ges in ranges between 1985–1988 and 2013–2017, for four species of
breeding birds, selected for illustrative purposes (Fig. 3).

To test if predictions of species’ responses to environmental
change can be improved by accounting for changes in land cover as
well as climate, we fitted an additional set of SDMs using both climate
and land cover variables. Alongside the climate variables described
above, these models included eight aggregated land cover types
derived from data obtained from the European Space Agency Climate
Change Initiative (ESA CCI, https://www.esa-landcover-cci.org/?q=
node/1). Land cover data are described in more detail below. Models
were fitted using land cover data from 1992 following the same pro-
cedure as above. They were then applied to land cover data for both
1992 and 2015 to predict the changes in species’ ranges that would be
expected given observed changes in climate and land cover. Although
these measures do not fully encompass the period between the two
atlases, they are, as far as we are aware, the best available data at
this scale.

Land cover suitability. To allowus topartition the effect of climate and
land cover in our analyses of colonisation and extinction events, we
calculated separate measures of land cover suitability and change in
land cover suitability in addition to our measures of baseline and
change in climate suitability. The land cover data obtained from the ESA
CCI, are a global data set available at a resolution of 300m and consist
of 24 annual maps of land cover, comprising 22 land cover classes from
1992–2015. We collated data on each species’ primary habitat associa-
tion, following the Mapping and Assessment of Ecosystems and their
Services classification86. We then aggregated the 22 land cover types of
the spatial land cover data into nine groups that broadly coincide with
the classifications used to define species’ primary habitat associations86.
Next, we intersected the land cover typeswith the same 50× 50 kmgrid
as the breeding bird atlas data and calculated the area of each of the
nine land cover types in each grid cell. For a measure of habitat diver-
sity, we calculated the diversity of land cover types within each grid cell
of the aggregated 1992 land cover map using Shannon’s diversity
index87. Using species’ primary habitat associations and the aggregated
land covermaps,we then calculated theproportionof land coverwithin
each grid cell classified as suitable for a given species in both the 1992
and 2015 maps. We used the amount of suitable land cover for each
species in 1992 as a measure of the baseline extent of favourable land
cover. As ameasureof change in the extent of favourable land cover, we
took the difference in the amount of suitable land cover between 1992
and 2015 for each species. To test the robustness of our analysis to the
aggregation of land cover types, we repeated our analysis using three
different class aggregations. Our results were robust to the class
aggregation used (Supplementary Figs. S7, and S8). For the analysis
presented here, we use the mean extent of favourable land cover and
the change in the extent of favourable land cover within a grid cell from
across the three class aggregations.

Altitudinal range. The altitudinal range of each grid cell was derived
from the ETOPO2 global dataset (available at 1 × 1 km resolution;
http://www.ngdc.noaa.gov/mgg/global/etopo2.html).

Areaof protected land. As a proxy forprotection status,wecalculated
the total area of land within each grid cell classified under the Inter-
national Union for Conservation of Nature (IUCN) protected area
categories I–VI using the World Database on Protected Areas (WDPA:
https://www.protectedplanet.net/).

Evaluating species’ range shifts
First, we examined the observed shifts in species’ ranges between the
two time periods (1985–1988 and 2013–2017). For each species, we

calculated the great-circle distance and direction between the centre
of gravity (COG) of their observed 1985–1988 range and the COG of
their observed 2013–2017 range. For each species, we then calculated
the great-circle distance and direction between the COG of the
1970–1990 predicted climate suitability layer and the COG of the
1995–2015 predicted climate suitability layer. This provided ameasure
of the distance and direction of the observed and predicted shift in
species’ climatic niches over the 30-year period (Supplementary
Figs. S3 and S4). We then compared the observed shifts in species’
ranges with the predicted shifts in species’ climatic niches using a
circular ANOVA88. We used a Wilcoxon Signed Rank test to compare
the observed and predicted distances of range shifts. We repeated the
above analysis to compare observed shifts in species’ COG with the
predicted shifts inCOG from the climate and land cover SDMs.We also
assessed the consistency of range shifts between specieswith different
primary habitat associations86.We found no consistent direction in the
shift of the COG of species ranges between the two periods for any
habitat association (Supplementary Fig. S12).

Assessing predictors of colonisation and extinction events
We used Markov Chain Monte Carlo generalised linear mixed models
from the ‘MCMCglmm’ R package89 to assess the relationship between
the environmental and species’ trait covariate sets and theoccurrenceof
colonisation and extinction events. We modelled these two processes
separately to enable us to investigate the putative drivers of colonisa-
tions and extinctions independent of one another. We defined a colo-
nisationevent as a species being recordedaspresent in a 50× 50kmgrid
cell in the 2013–2017 atlas but not in the 1985–1988 atlas. Extinction
events occurredwhere a specieswas recorded aspresent in a 50× 50 km
grid cell in the 1985–1988 atlas but not in the 2013–2017 atlas (Supple-
mentary Fig. S5). To control for any variation in sampling effort between
the two atlases, we restricted sampling to grid cells where sampling
effort has been identified as beingmore comparable over time21. To test
how robust our results were to this potential source of bias, we repeated
our analysis with grid cells sampled from the full data set. We found no
substantial differences in the overall results using the different sampling
criteria (Supplementary Figs. S7 and S8). We assumed a binomial dis-
tribution, with individual colonisations or extinctions recorded as ‘suc-
cesses’ and ‘failures’ drawn at random depending on the modelled
response. For the models of colonisations, we took a random sample of
cells from those that a species has never occupied (a failed colonisation),
equal to the number of colonisation events for that species. As failure to
colonise grid cells further away froma species’ rangewasmore likelydue
todispersal limitations,we alsofittedmodelsusing aweighted sampleof
failures. Theweight was assigned as 1/distance to the nearest continually
occupied cell, so that cells closer to a continually occupied cell were
given greater weight than those further away. We found no substantial
differencesbetweenmodelsfittedwithweightedorunweighted samples
of failures (Supplementary Figs. S7 and S8). In the extinctionmodels, we
took a random sample of cells from those that a species has con-
tinuously occupied, equal to the number of extinction events for that
species. The sampling of extinction ‘failures’ was non-weighted. To
account for any potential sampling bias within our results, we repeated
this sampling process ten times and repeated the model fitting process
described below for all ten absence samples.

MCMCglmm uses a Bayesian approach to fitting generalised linear
mixed models. It can account for the non-independence between spe-
cies that can arise from common ancestry by including a phylogenetic
variance–covariance matrix as a random effect. To account for the
repeated measurement of species and grid cells, and potential variation
in sampling effort and methods between countries, we included these
terms as additional random effects. For this, each grid cell was assigned
to a country based onwhich country the grid cell overlappedmost with.
In addition to the random effects of phylogeny, species, grid cell ID and
country, we also included the suite of trait parameters and
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environmental covariates detailed above. Finally, to investigate the
importance of the spatial structure of populations on species’ range
dynamics, we also fitted models with and without the distance to the
nearest continually occupied grid cell and the distance of a grid cell to
the speciesCOG in thefirst atlas asfixedeffects. All continuouspredictor
variables were standardised using z-transformations. Predictor variables
were also checked for collinearity, with no pair of variables having an
absolute correlation >0.7. To test for potential interactions between the
terms for climate and land cover suitability and change in these vari-
ables, we refitted our models including various iterations of these
interactions. We found these interaction terms to have a small, non-
significant effect (Supplementary Figs. S7 and S8). Models were fitted
using non-informative priors with an inverse Wishart distribution (V= 1,
ν=0.002). Model outcomes were insensitive to the specification of the
non-informative priors. We ran the model for 220,000 iterations, with a
burn-in period of 20,000 and a sampling interval of 200. Approximately
1000 independent samples were generated for each model. We used
Gelman–Rubin statistics and diagnostic plots to check for convergence
of model chains and the independence of samples.

To account for potential uncertainty in the phylogenetic trees, we
randomly selected ten trees from birdtree.org90 and fitted our models
to each of these trees. This resulted in 100 MCMCglmms for each of
the colonisation and extinctionmodels (ten phylogenies x ten random
absence samples). We then combined the posterior outputs of the
resulting models to provide estimates of model coefficients that
incorporated uncertainty fromboth phylogeny and absence sampling.
For eachmodel, we calculated the percentage of variance explained by
the fixed effects and assessed model performance using marginal R2,
following the methods described in Nakagawa & Schielzeth91. All ana-
lyses were performed in R version 3.6.192.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data from the first EuropeanBreeding Bird Atlas are available from
GBIF (https://doi.org/10.15468/adtfvf). The data from the second Eur-
opean Breeding Bird Atlas area available for free from https://ebba2.
info/data-request/. Registration will be required for data download.
CRU climate data are available from https://crudata.uea.ac.uk/cru/
data/hrg/. ESA CCI land cover data are available from https://www.esa-
landcover-cci.org/?q=node/1. ETOPO2 altitude data are available from
http://www.ngdc.noaa.gov/mgg/global/etopo2.html. WDPA data are
available from (https://www.protectedplanet.net/). The species trait
data compiled in this study are provided in the Supplementary Infor-
mation. Source data are provided as a SourceData file. Source data are
provided with this paper.

Code availability
Code to carry out analyses93 is publicly available on https://github.
com/christinehoward399/.
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