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Process-based models are becoming increasingly used tools for understanding how 
species are likely to respond to environmental changes and to potential manage-
ment options. RangeShifter is one such modelling platform, which has been used to 
address a range of questions including identifying effective reintroduction strategies, 
understanding patterns of range expansion and assessing population viability of spe-
cies across complex landscapes. Here we introduce a new version, RangeShifter 2.0, 
which incorporates important new functionality. It is now possible to simulate dynam-
ics over user-specified, temporally changing landscapes. Additionally, we integrated a 
new genetic module, notably introducing an explicit genetic modelling architecture, 
which allows for simulation of neutral and adaptive genetic processes. Furthermore, 
emigration, transfer and settlement traits can now all evolve, allowing for sophisti-
cated simulation of the evolution of dispersal. We illustrate the potential application 
of RangeShifter 2.0’s new functionality by two examples. The first illustrates the range 
expansion of a virtual species across a dynamically changing UK landscape. The second 
demonstrates how the software can be used to explore the concept of evolving connec-
tivity in response to land-use modification, by examining how movement rules come 
under selection over landscapes of different structure and composition. RangeShifter 
2.0 is built using object-oriented C++ providing computationally efficient simulation 
of complex individual-based, eco-evolutionary models. The code has been redeveloped 
to enable use across operating systems, including on high performance computing 
clusters, and the Windows graphical user interface has been enhanced. RangeShifter 
2.0 will facilitate the development of in-silico assessments of how species will respond 
to environmental changes and to potential management options for conserving or 
controlling them. By making the code available open source, we hope to inspire fur-
ther collaborations and extensions by the ecological community.

Keywords: animal movement, connectivity, distribution modelling, dynamic 
landscapes, individual-based modelling, population viability, process-based 
modelling.
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Background

Faced with an accelerating global biodiversity crisis caused by 
multiple interacting and often anthropogenic environmental 
changes (Ceballos  et  al. 2015, Urban 2015, IPBES 2019), 
biologists are striving to understand and predict how species 
will respond, in both ecological and evolutionary terms, to 
these threats and to management interventions (Urban et al. 
2016, Urban 2019). Policy makers, conservation biologists 
and land managers are relying more and more on such pre-
dictions to manage biodiversity on multiple fronts, including 
protecting threatened species, limiting invasive species and 
targeting habitat restoration efforts to both enhance in-situ 
conservation and promoting range shifting (IPBES 2019). 
Process-based models, also called dynamic or mechanistic 
models, have become increasingly popular following many 
calls urging the ecological community to move beyond cor-
relative approaches towards models that explicitly incorporate 
the key processes underpinning eco-evolutionary responses to 
environmental changes (Franklin 2010, Huntley et al. 2010, 
Schurr  et  al. 2012, Evans et  al. 2013, Thuiller  et  al. 2013, 
Urban et al. 2016, Cabral et al. 2017, Connolly et al. 2017, 
Briscoe et al. 2019, Peterson et al. 2019). Several models and 
platforms are actively being developed (Lurgi  et  al. 2015, 
Landguth  et  al. 2017, Okamoto and Amarasekare 2018, 
Schumaker and Brookes 2018, Cotto  et  al. 2020, Kearney 
and Porter 2020, Visintin  et  al. 2020), benefits and short-
comings scrutinised (Dormann  et  al. 2012, Singer  et  al. 
2016, Zurell et al. 2016, Fordham et al. 2018, Johnston et al. 
2019), and a promising variety of applications is emerging 
(Synes et al. 2016).

RangeShifter is a process-based model that we initially 
developed (Bocedi  et  al. 2014b) in response to the many 
calls for moving towards integrated dynamic modelling 
approaches. The main objective was to provide an individual-
based, spatially explicit modelling platform that integrated 
population dynamics with sophisticated dispersal behaviour, 
and that could be used for a variety of applications, from 
theory development to in-silico testing of management inter-
ventions. Indeed, since its release, RangeShifter has been 
used in studies addressing a range of issues, including testing 
the effectiveness of alternative management interventions to 
improve connectivity and population persistence (Aben et al. 
2016, Henry  et  al. 2017, Bleyhl  et  al. 2021), facilitating 
range expansion (Synes et al. 2015, 2020), improving rein-
troduction success (Heikkinen  et  al. 2015, Ovenden  et  al. 
2019), investigating range dynamics of invasive (Fraser et al. 
2015, Dominguez Almela  et  al. 2020) and recovering spe-
cies (Sun  et  al. 2016) and theoretically investigating how 
different traits and processes affect rate of range expansion 
(Bocedi et al. 2014a, Henry et al. 2014, Barros et al. 2016, 
Santini et al. 2016). RangeShifter has also been coupled with 
CRAFTY (Murray-Rust et al. 2014), an agent-based model 
designed to explore the impact of land managers’ behaviours 
on land-use change, showing that, in the example context of 
predicting interactions between crops and their pollinators 
in a changing agricultural landscape, models that integrate 

ecological processes with land managers’ behaviours, together 
with their interactions and feed-backs, can reveal important 
dynamics in land use change, which might otherwise be 
missed (Synes et al. 2019, Willemen et al. 2019).

Here, we present the new RangeShifter 2.0, which, among 
various additions and improvements, includes two major 
novelties compared to the original version (RangeShifter 
1.0): the option for implementing temporally dynamic land-
scapes and a module for the explicit modelling of neutral and 
adaptive genetics (controlling dispersal traits). RangeShifter 
is written in C++; it has been completely recoded from its 
original release following object-oriented programming prin-
ciples and is now open source, thus facilitating wider usage 
and enhancements by the ecological community. The source 
code (<https://github.com/rangeshifter>) now presents a 
modular class structure (Supporting information) which 
facilitates development and integration of new modules. 
RangeShifter 2.0 can either be used through the original and 
now improved Windows graphical user interface (GUI) or be 
compiled to run in batch-mode on Windows or Linux sys-
tems (as described here: <https://github.com/RangeShifter/
RangeShifter-batch-code>). Whether the model is run 
through the GUI or the batch-mode, each simulation is 
completely reproducible as an output file is produced which 
specifies all the parameters and settings. Additionally, we pro-
vide a dedicated website (<https://rangeshifter.github.io/>) 
and updated tutorials for learning to use RangeShifter, and a 
forum page for communication among users. Below we sum-
marise the main RangeShifter features and briefly describe, 
and illustrate with examples, the two major additions of 
dynamic landscapes and explicit genetics, while we refer to 
the RangeShifter 2.0 User Manual (<https://github.com/
RangeShifter/RangeShifter-software-and-documentation>) 
for an overview of the full functionality, including the 
description of smaller changes and new features in ver. 2.0.

Methods and features

RangeShifter 2.0 is an individual-based, spatially explicit and 
stochastic modelling platform which models single species’ 
spatial population dynamics on gridded landscapes over dis-
crete yearly or seasonal time steps. It represents three main 
interacting processes: demography, dispersal and evolution. 
Demographic models can have either non-overlapping gen-
erations, or be stage-structured (in which case density depen-
dence can be flexibly applied to fecundity, development and/
or survival of each stage); and they can either be asexual (or 
female only, assuming that females are the only limiting sex 
for population dynamics) or sexual. Dispersal is modelled 
in its three main phases (Clobert  et  al. 2009): emigration 
(individual leaves the natal habitat), transfer (individual 
moves through the landscape) and settlement (individual 
establishes in a new breeding habitat patch). All the three 
phases can be sex- and/or stage-specific. Emigration can be 
density-independent or -dependent. The transfer phase is 
modelled either with a phenomenological dispersal kernel 
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or through one of two mechanistic movement models (cor-
related random walk or the stochastic movement simulator, 
SMS; Palmer  et  al. 2011). SMS models the dispersal tra-
jectory on a stepwise basis whilst accounting for perceived 
movement costs (based on similar cost surfaces to the least 
cost path (Adriaensen et al. 2003) and the individual’s per-
ceptual range), and a tendency to follow a correlated path, as 
determined by the directional persistence and the dispersal 
bias parameters. The dispersal bias determines the tendency 
of moving in a straight line away from the natal patch, and 
is subject to a decay in strength as a function of the accu-
mulated number of steps taken (Supporting information). 
Finally, the settlement decision can be a plastic response to 
density or availability of mates or a combination of these. 
The evolutionary processes are modelled using explicit genet-
ics which can be both neutral and adaptive for dispersal traits.

We summarise and define the main processes, options and 
parameters in Supporting information. For more information, 
the RangeShifter 2.0 User Manual (<https://github.com/
RangeShifter/RangeShifter-software-and-documentation>) 
provides extensive and detailed documentation on the con-
cepts and methods implemented in the platform, on how 
to use each of its components, and several tutorials which 
guide the user through the practical steps needed to use the  
main features.

Dynamic landscapes

Considering dynamically changing landscapes is crucial for 
scenario-based simulations (e.g. climate change or land-used 
change scenarios), for implementing landscape processes 
through time (e.g. ongoing habitat fragmentation) and for 
testing dynamic management interventions accounting for 
time lags from their deployment (e.g. creating a new wood-
land) to the realization of their full potential (Watts  et  al. 
2020). In RangeShifter 2.0, the landscape may be changed 
any number of times during a simulation, but always at the 
start of the year, i.e. prior to reproduction. The changes may 
comprise any of: alterations to the habitat structure; addition, 
removal or changes of patches in a patch-based model; and 
modifications of the cost map when using SMS.

Explicit genetics

A new module is provided to define the genetic architecture 
of a species in a flexible and explicit way. Individuals may 
carry one or more chromosomes, to which neutral loci and 
adaptive loci controlling dispersal traits are mapped. It is pos-
sible to model a large number of neutral markers (limited 
only by the computer’s memory), thus allowing tracking of 
population structure and neutral diversity, as well as simu-
lating spatial genetic patterns emerging from the interaction 
between demographic and spatial processes, e.g. for in-silico 
applications of landscape genetics (Manel et al. 2003). The 
dispersal traits have been extended to cover density-depen-
dent emigration and settlement reaction norms, which may 
optionally differ between the sexes. Additionally, if SMS is 

selected as the movement model in the transfer phase, the 
parameters controlling directional persistence and the disper-
sal bias and its decay (Supporting information and the User 
Manual) can be modelled as evolving traits. Each dispersal or 
movement trait can be controlled by a separate single chro-
mosome, akin to RangeShifter 1.0 (Bocedi et al. 2014b), or 
through a highly flexible mapping of traits to chromosomes, 
which enables the degree of linkage between traits to be 
controlled and, optionally, pleiotropy to be incorporated, 
thus allowing for complex genetic architectures underlying 
evolution of dispersal strategies (Saastamoinen et al. 2018). 
The whole genome of each individual may be output in a 
separate file if required, e.g. for the calculation of landscape  
genetic indices.

Example applications

Effectiveness of woodland creation strategies to 
facilitate range expansion

We illustrate the application of dynamic landscapes using the 
example of woodland creation in a real UK landscape intro-
duced by Synes et al. (2015, 2020), who compared the effects 
of various realistic management scenarios for improving 
functional connectivity for a range of exemplar virtual wood-
land species on both species’ persistence in existing patches 
and range expansion ability. They compared persistence and 
expansion rates under the management scenarios with a base-
line rate for the original landscape. However, as the landscape 
changes were ‘instant’, i.e. the new habitat was assumed to 
be immediately fully suitable, the differences they observed 
could be over-estimated, as newly planted woodland would 
in reality take many decades to develop into the equivalent 
of existing woodland in terms of its suitability as breeding 
habitat for many species (Watts et al. 2020). Rather, newly 
planted areas might be expected firstly to provide increased 
structure which might aid movement of woodland species, 
and then gradually increase in quality as breeding habitat as 
canopy cover develops.

Here, we assume as in Synes et al. (2015, 2020) that the 
locations of all new woodlands are allocated immediately 
and on land previously used as improved grassland or arable, 
and that planting of saplings occurs instantly in all locations. 
However, we use the new feature of dynamic landscapes, and 
assume that rather than instantly becoming mature wood-
land habitat, planted areas develop gradually over a period of 
40 yrs (Table 1, Fig. 1). We compared the dynamic landscape 
approach with the ‘instant’ landscape approach on the basis 
of the two most successful scenarios identified by Synes et al. 
(2015), namely ‘CreateRandom’ (new patches created any-
where) and ‘CreateSmallAdjacent’ (new planting to increase 
the size of existing patches of under 3 ha), applied to 4% 
of the landscape. For illustrative purposes we consider one 
virtual woodland species with simple sexual, stage-struc-
tured demography and good dispersal abilities (Bird_D+P−S+ 
in Synes  et  al. 2015). We modelled dispersal movements 
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Table 1. Temporal development of newly planted woodland, where 1/b is the fecundity density-dependent coefficient (individuals ha−1) 
(which largely determines the equilibrium density of the population), Cost is the perceived movement cost applied in modelling the transfer 
phase of dispersal by SMS and Mort is the per-step habitat-specific dispersal mortality probability.

Years 1/b Cost Mort Description

0–4 0 100 0.05 Permeable habitat – the planting of new woodland provides enhanced movement potential (with lower 
movement costs). However, the limited canopy cover has no impact on mortality or breeding potential: 
treat as similar to semi-improved grassland

5–9 0 10 0.005 Permeable and safe habitat – as the new woodland develops, it provides increased structural cover for 
movement and reduced mortality, but it is still too young to provide suitable breeding habitat: treat as 
dwarf shrub heath

10–19 5 5 0.002 Low quality breeding habitat – the new woodland starts to provide a degree of reduced quality breeding 
habitat and settlement starts to occur, but there are still movement costs and a small mortality risk

20–29 10 2 0.001 Medium quality breeding habitat – movement and mortality risks decrease further as canopy cover 
develops and breeding quality is enhanced

30–39 15 1 0.0 High quality breeding habitat – further canopy closure removes movement costs and mortality risk and 
patch quality moves towards that of established woodland

40–100 21 1 0.0 Very high quality breeding habitat – optimal high quality woodland habitat is achieved in year 40 as 
previously Synes et al. (2015) implemented from year 0

Figure 1. Example of dynamic landscape development: (a) initial landscape, (b) after five years when newly planted woodland adjacent to 
small patches is treated as dwarf shrub heath for dispersal modelling, (c) after 20 yrs as canopy closure develops, (d) final landscape after 40 
yrs when newly planted woodland is fully mature. The black line shows the northern limit of the initial range.
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through the landscape with SMS. To ensure that the spe-
cies was in equilibrium before management commenced, we 
ran simulations for 50 yrs on the original landscape before 
applying the first landscape change, and then continued for 
a further 100 yrs during which range expansion was allowed 
to occur under the management scenario. Simulations were 
run on the baseline landscape and on all the 10 replicate 
landscapes for each scenario generated by Synes et al. (2015), 
and each simulation was replicated 10 times. All the model 
parameters and options are reported in the Supporting infor-
mation. We further provide instructions on how to run this 
example (Supporting information).

For the instant landscape approach (Synes  et  al. 2015), 
the mean rate of range expansion for the CreateRandom sce-
nario was 187 m yr−1 over 100 yrs (standard error SE 2.34 m 
yr−1), 2.0 times the rate on the baseline landscape. Similarly, 
for the CreateSmallAdjacent scenario, the mean rate of 
range expansion was 201 m yr−1 (SE 2.90 m yr−1), 2.1 times 
faster than the baseline. By applying the dynamic landscape 
approach to the CreateRandom scenario, the mean rate of 
range expansion was reduced negligibly to 184 m yr−1 (SE 
2.64 m yr−1; relative reduction 1.6%). In contrast, for the 
CreateSmallAdjacent scenario, the mean rate of range expan-
sion was increased slightly to 216 m yr−1 (SE 2.69 m yr−1; 
relative increase 7.5%). Despite rather similar total expan-
sion rates over a period of 100 yrs, the temporal trajectories 
differed considerably between the instant and the dynamic 
landscape approach, as is illustrated for a single landscape 
replicate of the CreateSmallAdjacent scenario (Fig. 2). The 
total population size on the dynamic landscape lagged behind 
that on the instant landscape by up to 25% during the first 
40 yrs after planting (Fig. 2A), and the location of the north-
ern range margin on the dynamic landscape was up to 5 km 
further south during the succeeding 40 yrs (Fig. 2B).

Evolution of multiple dispersal traits

We illustrate how RangeShifter 2.0 can be used to model evo-
lution of complex dispersal strategies, which involve evolu-
tion of multiple traits defining all three phases of dispersal 
(emigration, transfer through the landscape and settlement in 
a new habitat patch) on landscapes that differ in their struc-
ture and composition. All the model parameters and options 
are reported in Supporting information. Equations defining 
reaction norms can be found in the Supporting information. 
As for the previous example, we provide instructions on how 
to run this example (Supporting information).

We modelled the evolution of dispersal traits of an annual 
sexual species on a set of three stylised landscapes of 121 rows 
× 121 columns differing in the degree to which movement 
was inhibited by the presence of high-cost cells in the land-
scape (Fig. 3). Temporally uncorrelated local environmental 
stochasticity was applied in two forms in order to promote 
dispersal evolution: as annual variability in carrying capac-
ity (where carrying capacity of each suitable cell varies yearly, 
and independently from other cells, between 10 and 50 
individuals ha−1) and as a small probability of local patch 
extinction (where populations in each suitable cell have an 
independent yearly probability of extinction of 0.015). The 
parameters controlling all three phases of dispersal evolved 
independently of one another, each trait being determined by 
a separate autosome having three unlinked loci. Emigration 
and settlement traits were modelled as sex-dependent, thus 
having sex-limited phenotypic expression. Emigration 
probability could evolve density dependence, where the six 
parameters defining the sex-specific reaction norms to den-
sity (three parameters per sex) were modelled as evolving 
traits (Supporting information). Settlement probability for 
both sexes could also evolve density dependence, where the 

Figure 2. Consideration of dynamic landscape restoration affects predictions on species’ range expansion dynamics. (A) Mean total popula-
tion size and (B) mean location of species’ northern range margin for the instant (blue) and dynamic (red) landscape change methods  
commencing at year 50 for a single landscape replicate of the CreateSmallAdjacent scenario. Shades show 95% confidence intervals  
from 10 replicates.



1458

sex-specific reaction norms were defined by further six evolv-
ing traits (Supporting information). Males had the additional 
fixed settlement condition of requiring the presence of a mate 
in the patch.

The transfer phase of dispersal was modelled using SMS. 
The directional persistence (DP) and the parameters defin-
ing the decay function of the dispersal bias were modelled 
as evolving traits, thus allowing for evolution of move-
ment rules (Supporting information). In the baseline  
Landscape 1 (Fig. 3), there were no inhibitory cells in the 
matrix (Cost = 10; per-step mortality = 0.01), and there-
fore we would expect relatively straight movement to evolve 
(Zollner and Lima 1999). However, in Landscape 2, it is 
much less clear what would be the best movement strategy, 
as the orthogonal paths between patches are inhibited by  
high-cost cells (Cost = 1000; per-step mortality = 0.5), 
whereas the diagonal movements are not. Finally, in Landscape 
3, both orthogonal and diagonal paths are impeded, and 

dispersal becomes riskier. The species may therefore evolve to 
disperse less and/or dispersers may evolve strategies to reach a 
new patch whilst avoiding as much as possible the high-risk 
inhibitory cells. We ran ten replicate simulations of 2000 yrs 
on each landscape.

As expected from the spatial configurations, the dispersal 
strategies that evolved on the three landscapes differed mainly 
in the parameters related to the transfer phase, hence defining 
the individuals’ movement trajectories (Fig. 3A–C), whereas 
they evolved similar reaction norms for the emigration and 
settlement phases (Supporting information). In the absence 
of inhibitory features in Landscape 1, very straight movement 
trajectories evolved (Supporting information): both mean 
DP and mean initial dispersal bias (the tendency to move in 
a direction away from the natal patch) reached high values 
of ~ 7.0 and 2.5 respectively after 2000 yrs (Fig. 3A–B), and 
indeed there was some indication that they were still increas-
ing slightly. In contrast, when orthogonal movement became 

Figure 3. Stylised landscapes used to model evolution of dispersal traits (upper panels). Landscape 1 comprises evenly distributed breeding 
habitat patches of 100 m × 100 m (yellow) set in a homogenous matrix (grey). In Landscape 2 high-cost cells inhibitory to movement (blue) 
are added orthogonally between the patches. In Landscape 3 additional inhibitory cells are added to the diagonals between patches. (A–C) 
Evolution of mean transfer traits, directional persistence (A), initial dispersal bias (B) and dispersal bias inflection point (measured in steps 
taken; C), on the three landscapes. Phenotypic values are averaged over all individuals and 10 replicate simulations.
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inhibited in Landscape 2, much less direct movement evolved 
(Supporting information), as determined by low mean DP 
(Fig. 3A). Mean initial dispersal bias initially remained rela-
tively high at around 2.0 (Fig. 3B), but its mean inflection 
point (the number of steps at which dispersal bias decreases 
most rapidly) decreased from around 16 steps on Landscape 
1 to around 12 steps (Fig. 3C). Thus, dispersers evolved in 
Landscape 2 would be following a much less straight path 
sooner after having left the natal patch compared to dispers-
ers evolved in the more benign Landscape 1 (Supporting 
information), thereby reducing the probability of moving 
past a suitable (low cost) cell detected within the perceptual 
range. The addition of inhibitory features to diagonal move-
ment further developed this trend: dispersal bias was little 
altered, but DP decreased to a very low level of around 1.3 
on average (Fig. 3A). Overall, the evolved movement rules 
translated into longer mean dispersal distances in the most 
benign landscape (Landscape 1), and to shorter distances in 
the riskiest (Landscape 3; Supporting information).

Emigration probability generally evolved to be male-
biased. Mean male emigration probability decreased as the 
occurrence of inhibitory cells in the landscape increased 
(Landscapes 2 and 3) because the cost of dispersal effectively 
increased (Supporting information). Male-biased emigra-
tion would be expected, given the loosely polygynous mating 
system (i.e. males can mate with multiple females but each 
female mates only with one male) and the high environmen-
tal and demographic stochasticity (Supporting information), 
which increase between-patch variance in male reproductive 
success (Henry  et  al. 2016, Li and Kokko 2019). Density-
dependent settlement evolved similarly in the two sexes, so 
that individuals were likely to settle at the first suitable patch 
encountered unless it was substantially above carrying capac-
ity (Supporting information).

Software performance

The time taken to run a model in RangeShifter 2.0 can vary 
hugely, but in general terms it will increase with increasing  
1) number of replicates, 2) number of years simulated, 3) size 
of the landscape (rows × columns, but excluding ‘no-data’ 
regions), 4) number of suitable patches or cells (and hence 
number of potential local populations), 5) total number of 
individuals, 6) proportion of individuals dispersing at any 
one time, and, most importantly, 7) frequency and level of 
output data (especially individual-level output). A simulation 
applying a movement model for the transfer phase of disper-
sal will also usually take longer than an equivalent simulation 
applying a dispersal kernel, and eco-evolutionary models will 
generally take longer than ecological models.

The dynamic landscape example took about 63.5 hours 
on an Intel Xeon E5-2667 CPU 3.2 GHz processor, whereas 
the dispersal evolution example took only 1.75 hours on an 
Intel Core i7-8665U CPU 2.11 GHz processor. Although 
the dispersal evolution example ran for 2000 yrs as opposed 
to 150 yrs, it comprised only 30 replicates as against 210, 
and mean population size was only around 2600, whereas the 

expanding populations in the dynamic landscape example 
increased to as much as 42 000 individuals.

Discussion

RangeShifter 2.0 provides enhancements and substantial 
extensions to the RangeShifter software (Bocedi et al. 2014b) 
expanding its potential range of applications. The flexible 
and spatially-explicit demography and dispersal modules can 
now be combined with a flexible genetically-explicit repre-
sentation of neutral markers and/or multiple dispersal traits, 
allowing for diverse applications focussed on combining 
population genetic processes with ecological and environ-
mental processes (Manel et al. 2003, Epperson et al. 2010) 
and accounting for evolution of complex and multi-trait 
dispersal strategies (Cote  et  al. 2017, Legrand  et  al. 2017, 
Saastamoinen et al. 2018). This is further combined with the 
ability of incorporating dynamic landscapes, enabling appli-
cations that explicitly aim to predict species’ genetic, eco-
logical and evolutionary responses to ongoing environmental 
changes. Such applications include in-silico testing of man-
agement interventions which need to account for the occur-
rence of ecological time-lags when targeting and evaluating 
conservation actions (Watts et al. 2020).

Importantly, and in contrast with the previous release, 
RangeShifter 2.0 source code is now open source (<https://
github.com/rangeshifter>), published under the GNU gen-
eral public license (GPLv3). It is hence free for the wider 
community to use, modify and share under the terms of 
GPLv3. The GitHub repository is open to pull requests from 
third-party researchers, and the development of new custom 
processes is facilitated by the new object-oriented and modu-
lar code structure (Supporting information for a schematic). 
Furthermore, RangeShifter 2.0 is also the core of the new 
package RangeShiftR (Malchow  et  al. 2020), which allows 
running RangeShifter from the R environment (<www.r-
project.org>) while maintaining the high performance of the 
C++ code, and includes functions assisting with the set-up 
of the simulations, the parameterisation and output analy-
ses. RangeShiftR, in addition to improving and broadening 
RangeShifter accessibility, makes it easily available for mul-
tiple platforms, has access to R’s infrastructure for parallel 
and cluster computing and offers many opportunities for 
interoperation with other R packages.

RangeShifter 2.0 additionally comes with an enhanced 
Windows GUI as freeware. The pre-built executable file 
is available from <https://github.com/RangeShifter/
RangeShifter-GUI>. The GUI acts as a wrapper to capture 
parameters and visualise the simulations in real time. All the 
parameters and settings captured by the GUI are written to an 
output file, thus making each simulation completely repro-
ducible. From current users, and from workshops that we are 
running worldwide, we are able to appreciate the value of the 
RangeShifter GUI: it is particularly useful for non-modellers 
to explore eco-evolutionary dynamics and their conservation 
implications, to recognise data gaps in empirical systems, to 
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communicate with stakeholders, and for teaching purposes 
across grades. It also provides an easily accessible and free 
software for countries with little funding for conservation and 
research. Further, to improve accessibility, the User Manual 
has now been translated into Spanish (<https://github.com/
RangeShifter/RangeShifter-software-and-documentation>).

RangeShifter is in continuous development, and there are 
key areas for future progress, which we hope, by making it 
open source and integrating it with R, will be addressed by a 
common effort to move towards a fully-integrated dynamic 
platform that includes all the key and necessary processes 
for predicting species’ eco-evolutionary responses to global 
changes. For example, RangeShifter 2.0 currently remains 
a single-species model, while inter-specific interactions are 
often key in determining species’ persistence to global changes 
(Gilman et al. 2010, Norberg et al. 2012, Urban et al. 2012, 
2019, Bocedi et al. 2013, Svenning et al. 2014, Thompson and 
Fronhofer 2019). Although we made a first important step in 
including explicit genetics, and we are actively prioritising this 
area of development, RangeShifter 2.0 does not yet include 
the level of sophistication that characterises much forward-
time population genetic software (Guillaume and Rougemont 
2006, Haller and Messer 2019), in terms of genetic processes, 
structures and outputs, and adaptive traits. For example, the 
possibility of modelling adaptation to multiple environmental 
variables will be a crucial addition. However, RangeShifter 2.0 
holds an advantage in terms of the ecological, demographic 
and dispersal complexity it can represent, which, combined 
with explicit genetics, opens possibilities for sophisticated 
landscape genetics applications and for fully accounting for 
evolution of dispersal behaviours (not just emigration rates) 
which are likely to be critical for species’ inhabiting or moving 
through complex, human-modified landscapes.

To cite RangeShifter 2.0 or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 1.0’:
Bocedi, G.  et  al. 2021. RangeShifter 2.0: an extended and 

enhanced platform for modelling spatial eco-evolution-
ary dynamics and species’ responses to environmental 
changes. – Ecography 44: 1453–1462 (ver. 2.0.1).
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